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FOREWQORD

The prospect of undertaking a reusable launch vehicle development led the NASA
Office of Manned Space Flight (OMSF) to request the Office of Advanced Research and
Technology (OART) to organize and direct a program to develop the technology that
would aid in selecting the best system alternatives and that would support the ultimate
development of an earth-to-orbit shuttle. Such a Space Transpertation System Tech-
nology Program has been initiated. QART, OMSF, and NASA Flight and Research
Centers with the considerable inputs of Department of Defense personnel have generated
the program through the efforts of several Technology Working Groups and a Technology
Steering Group. Funding and management of the recommended efforts is being accom-
nlished through the normal QART and OMSF line management channels. The work is
being done in government laboratories and under contract with industry and universities.
Foreign nations have been invited to participate in this work as well.

The Space Transportation System Technology Symposium held at the NASA Lewis
Research Center, Cleveland, Ohio, July 15-17, 1970, was the first public report on
the program. The symposium on which this publication is based was held at Pheonix,
Arizona during the week of March 15, 1971 and was the second report in the areas of
Biotechnology as well as Operations, Maintenance, and Safety. The Symposium goals
are to consider the technolegy problems , their status, and the prospective program out-
look for the benefit of the industry, government, university, and foreign participants
considered to be contributors to the program. In addition, they offer an opportunity to
identify the responsible individuals engaged in the program. The Symposium sessions
are intended to confront each presenter with his technical peers as listeners.

Because of the high interest in the material presented, and also because the people
who could edit the output are already deeply involived in other important tasks, we have
elected to publish the material essentially as it was presented, utilizing mainly the illus-
trations used by the presenters along with brief words of explanation. Those who heard
the presentations, and those who are technically astute in specialty areas, can probably
put this story together again. We hope that more will be gained by compiling the informa=-
tion in this form now than by spending the time and effott to publish a more finished com-
pendium later.

A. 0. Tischler

Chairman,

Space Transportation System
Technology Steering Group
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SPACE SHUTTLE OPERATIONS , MAINTENANCE
AND TECHNOLOGY INTEGRATION

C. C. Gay, Jr.

Director, Systems Engineeting, Space Shuttle Program Office,
NASA Headquarters, Washington, D.C.

INTRODUCTION

As the subject of this paper implies, we on the Space Shuttle program have a
unique opportunity to build and operate the "707" of space transportation systems. The
idea of a two stage fully reusable aircraft/spacecraft system is not new. QOver a decade
ago, NASA had accomplished this feat by mating the X~-15 with its hooster, the B-52
as shown in Figure 1. By using this method, NASA was able to mate, fuel the X~-15
with hydrogen-peroxide, man the system, launch and fly 199 flights up to altitudes of
354,200 feet and speeds up to mach 6,7 and recover both stages in a safe efficient
manner. The technology requirements for facilities, aperational support, fogistics impli-
cations, crew and passenger mix, mission capability, maintenance and checkout apetra-
tions, and abort and recovery operations are overviewed in this paper.

PROGRAM REQUIREMENTS
THAT EFFECT OPERATIONAL TECHNOLOGY

At this point in time, the Shuttle program is in the preliminary design phases of the
selected configurations preparing for the 9 month technical "data dump.” Figures 2 and
3 show examples of the selected configuration.  Figure 4 shows the current schedule
and how the phase B Shuttle activity phases with phase C/D Shuttle engine development
and technology activities. As phase B activities have progressed, operational require-
ments have been refined to the point where Shuttle vehicle and engine configurations and
sizing have been determined. Figure 5 shows the main engine characteristics currently
in phase C design. Concurrently with the above activities the wind tunnel programs at the
various government and contractor facilities are continuing to verify the design and con-
figurations selected.

With the "honed down" requirements emerging from phase B trade study activities,
the third round of Shuttle program iterations can begin. NASA expects to start phase C
design work in FY 1972.

FACILITIES

Shuttle missions, present programs, cost and safety requirements shape and form
the total Shuttle facility framework. Figure & shows a conceptual Shuttle operational
area. The ideal situation for the Shuttie would be to have an optimum positioning of the

final assembly, horizontal and vettical flight test, maintenance and launch areas of the
1
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Shuttle booster and orbiter vehicles with as little new construction of facilities as possi-
ble. This, of course, has been and is an important trade study. So important in fact,
that it can be a significant cost factor in design of the vehicles. The total integration

of all phases of Shuttle facilities requires that test and operations technology be inte-
grated at an early date into Shuttle vehicle and test design.

SAFETY

Underlying the total Shuttie and facility design effort is the element of safety. A
major requirement for the Shuttle is airline type flight operations and that means intact
abort with the crew and passengers. Another major requirement is that the Shuttle have
a once around abort to continental United States capability and a possible return to base.
Depending on launch site location and mission inclinations, aborts downrange vs aborts
to orbit are also being considered. This means that over-flight of populated areas have
to be considered as well as low ascending flights over foreign territories. To forestall
actual aborts the Space Shuttle vehicle is being designed with very high safety standards.
Standards that are similar to SST levels. In general, fail operational /fail safe concepts
are used for the structural portions of the vehicle while fail operational /fail operational /
fail safe is being designed into Shuttle avionics systems. Ground support systems shoufd
also match these guidelines so that the total system conforms to the desired safety level.
Also of concern is determining how to advance Apollo pre-launch and launch operations
technology from an R&D activity occuring two times a year to a routine once a week air-
line type activity. NASA has a major requirement to safely fuel the Shuttlie vehicles
with approximately 3.6 million pounds of cryogenic propellant within two (2) hours. This
is a result of an important space rescue requirement. Further, in a normal mission,
launch and flight operations are now concerned with handling semi-trained passenger-
scientist/technicians in a safe expedient manner. This means some kind of standard
operational-safety training for some yet undertermined time prior to a launch to assure
passenger suitability for space travel. NASA currently has safety technology studies in
work. Some of these technology studies are: Liguid propellant; Explosion analysis;
Space Shuttle safety and operations margins engineering analysis; Launch azimuth abort
and safety; Hydrogen filled system safety; Spacecraft fire protection; Hydrogen fire detec~
tion system, etc.

LOGISTICS

With the advent of the STS, NASA must change from a pure R&D activity to an
operational activity. This means that new methods must be found to logistically support
all activities of the Shuttle. Some logistic activities required for the Shuttle are:

Passenger handling

Cargo handling before launch and after landing

Fuel storage and servicing

Parts supply

Payload advanced conditioning and checkout handling, and security.

nbhwp



As mentioned previously, passenger and payload handlers have to be trained well in
advance to handle their tasks. This means a pipeline of payloads has to be established
for normal and emergency operations. This can be likened to airline operations of normal,
deferred and immediate cargo handling. Much preplanning will be required to smoothly
operate the Shuttle. This means during Shuitle design, NASA has to constantly bear in
mind logistic integration into Shuttle operations. Some of the studies currently in work
for logistics technology are: Space cargo handling; Man-Machine integration/simulation
of crew and cargo transfer and docking; Support systems for both conditioned and gravity-
deconditioned passengers; payload handling, etc.

MAINTENANCE AND CHECKOUT

NAS A maintenance and checkout activities presently are confined to R&D one-~time
usage procedures. New technology is required to reduce long checkout periods down to
a matter of hours. Now the Shuttle designers must closely integrate rapid checkout fea-
tures into the vehicle and GSE. Again the airline concept of autenomous opearation has
to be borne in mind. Present aitline maintenance and checkout technology must be used
as a basis for NAS A to change thinking from one-time usage to repeated usage ali at low
cost. Refurbish and maintenance concepts for rocket vehicles are new. NASA will have
to integrate new technology for non-destructive testing and possibly go into the "on-
condition" maintenance concept that airlines have been using for several years. This
means that NAS A might not use the TBO concept, but instead, use the "leave~it~alone”
principle. For reusable rocket engines this means an entirely different viewpoint with
new design oriented toward building into the engines a refurbish and maintenance capa-
bility. Figure 7 shows a space Shuttie main rocket engine schematic. New boroscope
techniques, etc., will be needed for fast economical turnaround. Shuttle usefui life of
ten years will require the use of new operational technology developments to accomplish
this goai.

Some of the maintenance and checkout studies in work are: Structural integrity
assessment techniques; Rapid loading of cryogenics and gases; Leak detection technigues;
Redundancy checkout techniques; Bearings and seals development; Non-destructive test~
ing technigues for fight readiness verification; etc.

OPERATIONS

Launch operations of the Shuttle combines the use of facilities, safety, logistics,
maintenance and lastly, checkout. Figure & shows the Shuttle vehicle at launch, The
concept of on=board checkout is being pushed by NASA and is a prime design considera-
tion to reduce time and costs. Checkout before and after erection, in a matter of hours,
is a great technology challenge. To start with, during the flight test phase, checkout
will understandably be slower but as experience and procedures are refined and by the
completion of the ten vertical flight test launches, checkout should be fairly rapid.
However, now is the time to integrate checkout technology into Shuttle design.
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Flight operations will also have to be simplified in some areas and increased in
others. With an autonomous operational requirement for the Shuitle, communication with
the ground shouid not be any more stringent than an aitliner. Probably in the early
launches, tempotary communication gear will be used but later removed as operations
become more sophisticated and confidence in the system is obtained. This would be
gear used locally during the flight test program. Hopefully, from a cost standpoint,
there would he very little extra to remove. Mostly TM channels, etc., would be removed
and on-board autonomous equipment utilized to the fullest extent. Thus ground operations
during flight would be reduced to a minimum. Unique operational technology developments
are needed to keep operational costs low. A trade has to be made using existing versus
new operational tracking equipment so that only costs chargeable to the Shuttle occur.

Some of the many operations oriented technology studies in work are: Terminal
approach and landing visibility envelopes; Auto pilot handling qualities; Flare and decrab,
INS/ILS smoothing; Operational studies; Test and flight engineering oriented man/
machine lanquage; Three landing arresting systems testing programs with FB-111 and
B-52 aircraft up to 300 M ft~lbs energy absorption.

CONCLUDING REMARKS

The Shuttle program does pose unusual unsolved opportunities for NASA as well as
industry in ali areas, but the integration of operations, maintenance and safety technology
into Shuttle design is where a great payoff will occur for the Space Shuttle program.

Thus the concept of an economical fully reusahle space transportation system can be
achieved and could well alter the future of world space operations.

12
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AIRLINE VIEWPOINT OF SPACE SHUTTLE
MAINTENANCE CONCEPTS

Nicholas Krull

American Airlines

INTRODUCTION

My purpose today is to identify commercial airline maintenance concepts which offer
the promise of minimizing Space Shuttle maintenance costs. Airlines are uniguely guali-
fied to offer judgements in this field due to the perishable nature of our product: Namely,
available ton miles. Airline management decisions continually involve an economic
tradeoff between: The guality of service provided ... such as safety, convenience, com-

fort, and on-time departures; and the cost of maintaining the desired quality of service.

The final test of operational profitability comes down to our ability to minimize and con~
trol the maintenance costs required to sustain the desired level of service.

it is therefore necessary for me to first review the latest and most significant ele-
ments of "The Airline Maintenance Phijosophy." | will put special emphasis on the
unigue management support systems in current use at American Airlines. | will then pro-
ceed to illustrate where this philosophy can be applied to Space Shuttle maintenance
requirements as they are currently envisioned. | will conclude with some judgements
about major differences between an airline maintenance environment, and operational con-~
ditions unique to the Space Shuttle, '

AIRLINE MAINTENANCE COSTS

Airline maintenance costs have increased to a disproportionately farge percentage
of "total" aircraft cost in recent years. In a 15-year aircraft life cycle, these costs
amount to approximatefy three times the original aircraft purchase price, For some air-
craft components and systems, this relation between maintenance cost and purchase price
exceeds a 3:1 ratio by a wide margin. See Figure 1. _

A varicty of airline management control indices are used to monitor and control the
maintenance operation. The cost per available ton mile parameter provides a measute of
caost in relation to the amount of payload available. The operating hour data indicates
the cost level in relation to the mission activity level. The cost per maintenance visit
reflects the cost per unit of maintenance base activity. These basic measures are used
by most airlines and all three are required to perform the maintenance management func-
tion.

Budget control information is provided on a monthly basis and includes actual main-
tenance cost compared to forecast maintenance cost. These are reviewed on a monthly
basis and corrective action programs are initiated when cost overruns occur. See
Figure 2.

55



® 2%2-3 TIMES COST OF PURCHASE PRICE OVER
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COSTS

Figure 1
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MAINTENANCE CONCEPTS

Scheduled maintenance in the airline industry today consists of a composite of clean-
ing services, inspection, functional test, adjustment, removal, replacement, and recon~
ditioning work performed at rigidly controlied time intervals. As experience is acquired,
or as conditions change, these elements of the scheduled maintenance program are
revised upward ot downward in terms of the original time intervals. Underlying this is an
extensive system of data collection, cammunication, analysis, and planning. See Figure 3.

Unscheduled maintenance consists of on-aircraft and off-aircraft troubleshooting,.
fault isolation, repair, and replacement of components resuiting from the indicated defect
or malfunction.

Airline on-aircraft maintenance concepts revolve around a practical tradeoff between
aircraft availability, elapsed time, and maintenance man-hour requirements, Airlines
are very sensitive to aircraft downtime and the resuftant high cost impact. Each hour of
downtime for component replacement is worth $90 in interest, alone, on a four-engine
jet. Forthe 747 jumbo jet it is approximately $175/hour. These economics require
that we minimize aircraft out-of-service time for maintenance causes.

The maintenance philosophy for determining where to perform the off-aircraft main-
tenance, either on-site or off-site, is another economic tradeoff, with the parameter of
spares cost added. '

CONCEPT DEVELOPMENT

Airline maintenance programs were once hased almost entirely on the time limit con-
cept. See Figure 4. This scheduled maintenance concept required almost all component
replacement and other maintenance action to be performed at fixed time intervals. This
concept was based cn the following beliefs:

1. Wearout is a common defect and is a function of time.
2. Inspections at fixed time intervals can detect failures.
3. Overhauls at fixed time intervals can prevent failures.

In the early days of air transportation, these concepts were realistic since the designs
were relatively simple and equipment could be easily and quickly inspected. Such inspec-
tions were also quite effective in detecting potential failure modes. For the same rea-
sons, overhaul was relatively easy to accomplish. These early maintenance concepts
led to rigidly defined inspection and overhaul periods, commanly known as time between
overhaul or TBO intervals,

Since 1948, air transport designs have become significantly more complex due to

improvements and advances in safety, performance, efficiency, and comfort, This
technological trend has created a need for the development of new and revised maintenance
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Figure 3
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& PREVIOUS FIXED TIME CONTROL CONCEPT
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e SIMPLE vs. COMPLEX FAILURES
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AIRFRAMES

® FAA PHILOSOPHY

Figure 4
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concepts. See Figure 5. The airlines have shown that complex units do not folfow
the same failure pattern as simple parts. A great majority of components do not have
an increasing failure rate with time in service. This characteristic has been confirmed
through the experience of many airlines in recent years. This background, in turn, has
led to the deveicpment and acceptance of many new Condition Monitored Maintenance
(CMM) concepts and programs. The Federal Aviation Administration has also played
an active role in the development and implementation of these new airline maintenance
programs. Without their complete cooperation and approval the major changes in airline
maintenance concepts which have taken place in the last five years would not have been
possibie.

AMERICAN AIRLINES' RECONNAISSANCE

This program is a system that integrates the efforts of Flight, Overhaul, Line Main-
tenance, Engineering, Production Control, Inspection, and Supply in the detection,
identification, and solution of technical sroblems. This is accomplished through a data
collection and analysis system which assists a Problem Action Board in determining the
necessary corrective action programs,

CONDITION MONITORED MAINTENANCE

This is American Airlines' maintenance program for turbine engines which combines
management systems and computer techniques to determine the necessary corrective
action to continue the engine in service. Some of the major benefits of this program are:
Improved schedule reliability; improved maintenance practices, and concentration of
engine inspections o the specific needs of the engine.

FIELD MAINTENANCE RELIABILITY

This is a computer system that is a part of our nation-wide reservation system for
keeping track of the maintenance status and needs of each airplane in the fleet. Mainte-
nance actions and requirements are available to any city where a particular aircraft stops,
This is used to determine the next appropriate maintenance action.

COMPONENT RELIABILITY ANALYSIS METHOD

Figure 6 is the result of our analysis of component age-tailure technigues using
this system. It consists of a computer program utilizing actual techniques to analyze the
failure rates as the components get oider in their life cycle. The computer analysis is
provided the enaineer and he uses this as a tcol to determine what adjustments in the
maintenance program might be required.

COMPARISON WITH 747 OPERATION
Figure 7 depicts major similarities and difterences which indicate that some of the

Boeing 747 maintenance program concepts can be applied directly to Space Shuttle vehicle
maintenance.
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PRIOR TO EARTH LANDING

The accumulation and diagnosis of telemetered mission data will be required as a
complement ot substitute for many post-mission functional tests on the Space Shuttle
vehicles. See Figure 8.

1. Due to inability and/or cost of simulating a space environment after earth
{anding.

2. Because a 14-day maintenance turnaround interval does not permit time to
conduct elaborate and extensive ground tests.

This data will be used to establish the unscheduled maintenance bill of work to be
accomplished after return of the mission vehicles to the maintenance base site. This
characteristic of the Space Shuttle operation is analogous to the airline which employs a
Condition Monitored Maintenance (CMM), or on-condition, maintenance philosophy to
minimize out of service time due to maintenance.

SAFING AND RETRIEVAL AFTER EARTH LANDING

After the separate earth landings of the orbiter vehicle and the boaoster vehicle, a
retrieval crew will be required to perform the safing operation, which includes the. purg-
ing of unused cryogenics such as liquid oxygen and liquid hydrogen. Following the
safing operation, the retrieval crew will assist in the egress of the flight crew, remove
the mission cargo (which may require precautions against radioactive contamination),
and remove the on-bhoard data recording devices. In the event the initial earth landing is
made at the destination maintenance base site, the Space Shuttle vehicle will have to be
towed to the maintenance facility for the start of turnaround maintenance action. See
Figure 9.

Alternatively, the vehicles will have to be prepared for ferry flight return to the
maintenance base site, if an off-site landing was initially required. As currently
defined, this ferry flight preparation will include strapping on air breathing engines,
fueling, general servicing, and the necessary air traffic control clearances.

Here, again, we find Space Shuttle requirements which are analogous to the typical
aitline operation. Airline expettise in these areas can bhe an extremely valuable input to
the operational planning for Space Shuttle vehicles.

SCHEDULED MAINTENANCE, ETC.

The desire will be to minimize scheduled maintenance requirements after vehicle
return to the maintenance base site. Nevertheless the eventual maintenance program for
the Space Shuttle vehicles will require some degree of scheduled maintenance in accor-
dance with fixed times between repair and overhaul, See Figure 10.
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e PRIOR TO EARTH LANDING
— DATATELEMETRY
— FAULT DIAGNOSIS

— MAINTENANCE PLANNING

Figure 8

66



SAFING & RETRIEVAL AFTER EARTH LANDING
— PURGING

— POTENTIALLY RADIO ACTIVE CARGO REMOVAL
— OTHER FLUSHING & DECONTAMINATION
— MOVE OR FERRY TO MAINTENANCE SITE

Figure 9
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¢ SCHEDULED MAINTENANCE
— REPLACE VS.REPAIR
— DEFERRED MNTC/ MEL POLICY

— FIXED TIME VS. ON-CONDITION
— CONFIGURATION CONTROL

* INVENTORY & LOGISTICS

— SPARE COMPONENTS
— SPARE MATERIAL

Figure 10
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A deferred maintenance program will need to be developed to identify non-critical
items that can be deferred or rescheduledto a subsequent turnaround check. These items
could be controlled by what is known in the airlines as a Minimum Equipment List (MEL).
MEL specifies allowable tolerances for deactivated components and systems, and the
checks required to assure backup system integrity.

Some of the criteria used by the airlines to choose between scheduled maintenance
and on~-condition maintenance are directly applicable to the Space Shuttle. Criteria
similar to the ones used during development of the 747 maintenance program should be
considered. Airline configuration control programs are also agplicable to a comprehen~
sive Space Shuttle maintenance program.

Airline inventory and logistics concepts are applicable to the Shuttle Program. Com-
puter models to determine spare component and material levels are adaptable and could
contribute significantly to the optimization of inventory investment levels.

UNSCHEDULED MAINTENANCE, ETC.

Many of the Condition Monitored Maintenance concepts employed by major aitlines
can be applied directly to Space Shuttle vehicles. It is highly desirable that most main-
tenance activities be performed after it is determined that an "out~of-tolerance" condition
exists. Preventive maintenance should be fimited to those cases where unscheduled
maintenance is required or reliability can be improved.

Implementation of an on-condition maintenance concept reguires the maximum use of
all available data from the mission, post~flight inspections, and post-flight tests in order
to establish the need for corrective maintenance action. The capacity to implement on-
condition concepts is highly dependent on the application of such maintainability design
concepts as: On-aircraft accessibility; the ease of fault isotation; the predictability of
failure modes; and the ease of required remove and replace tasks. See Figure 11.

The airlines are uniquely experienced in these maintenance disciplines. There is
a constant pressure on airlines to minimize out-of-service time for maintenance, to
assure on-time departures and to minimize total operating costs, all at the same time.
Again, airiine experience with these operational constraints is d:rectly applncable to the
constraints of a Space Shuttle operation.

QUALITYASSURANCE, ETC.
The quality assurancé approach to Space Shuttle vehicie maintenance is a key ele-
ment in realization of the 14-day turnaround goal. The following comments relate to

maintenance base inspection requirements during turnaround only:

A variety of test and inspeétion technigues need to be utilized to optimize cost
effectiveness, such as nondestructive, self test and automatic test techniques. It is
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envisioned that diagnostic analyses will need to be performed by computer during the
checkout cycle to isolate the cause of malfunction and to determine the repair/replacement
necessary to return such hardware to an acceptable condition. Verification and accept-
‘ance criteria should be studied from an airline operations standpoint to determine their
application to Space Shuttie vehicles, Airline traceability and documentation methods
should also be studied as a means of achieving the 14-day tumaround goal. See Figure 12.

The fallowing airline maintenance support concepts appear to be directly applicable
to the Space Shuttle at this time:

1. The airlines use a number of computer programs to analyze and diagnose the
condition of the aircraft and determine maintenance requirements. Some of
these are: Computerized Engine Monitor Log, Eppi oil analysis, oil consump-
tion data, Airborne Integrated Data System.

2. Inventory models are used to optimize spare allocations and minimize inventory
levels. They also assist in the repair versus throw-away decisions.

3.  The techniques used to develop ground support equipment and tooling require-
ments and procedures for airline turnaround maintenance appear to have appli-
cation to the Space Shuttle.

4. Certain airline concepts of personnel selection and training can be applied,
including skills, aptitudes and certification requirements unique to Space
Shuttle technology.

CONCLUSIONS

From the foregoing discussion of airline maintenance concepts and their applica-
bifity to the Space Shuttle Program, we can conclude that many of these concepts can
be directly applied. We must, however, at the same time recognize limitations to the
direct application of these concepts.

In its early operation the Space Shuttle will not have the benefit of more than
1,300 takeoffs and landings each day to develop empirical experience. The mainte~
nance program will have to depend much more heavily on information developed by the
designer.

The vehicles will indeed have redundancy in their systems but not to the extent of
a modern airline passenger aircraft, The maintenance program must recognize this lower
degree of redundancy.

Perhaps the greatest limitation will be the psychological and to some degree, very

real concern over the consequences of a single failure. Commercial aircraft have an
exceptionally high tolerance to failure and although not commoan, have the capability to
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make unscheduled landings at altetnate airports. There will be a far greater concern for
the consequences of a failure on the Space Shuttle and this, to a large degree, will be
directly refated to the environment or mission enveiope within which it operates. Recog-
nizing these limitations and building them into the maintenance planning, we can readily
see that Condition Monitored Maintenance can be applied to the Space Shuttle. We
believe that it will be necessary in order to achieve the projected 14-day turnaround
and the desired low cost operation of these vehicles. In addition to the maintenance
concept many of the management systems can be modified to recognize and control
operating costs while at the same time improving the dependability for assuring on time
departures. See Figure 13. | cannot stress too highly that not only the similarities
but the differences must be recognized and builit into the maintenance plan at the time

of design if we are to expect the desired maintainability in the operation of the Space
Shuttle Program.
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Conclusions

LIMITATIONS
e EMPIRICAL EXPERIENCE
e REDUNDANCY
® FAILURE CONSEQUENCE

APPLICABLE AIRLINE CONCEPTS TO BE APPLIED
© CONDITION MONITORED MAINTENANCE NEEDEuU
TO ACHIEVE 14 DAY TURNAROUND.
® AIRLINE APPROACH TO ACHIEVEMENT OF A
LOW COST OPERATION.
© MAINTENANCE MANAGEMENT SYSTEMS FOR
MINIMIZING OPERATING COSTS.

» MANAGEMENT SYSTEMS TO ASSURE ON-TIME
DEPARTURES.

Figure 13
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ONBOARD VERSUS GROUND CHECKOUT
OF FLUID MECHANICAL SYSTEMS

Louis A, Mavros
James E. Harward
Richard H. Prickett

McDonnell Douglas Astronautics Company - East

ABSTRACT

The low cost and quick turnaround requirements of the Space Shuttle Program
suggest an investigation of the economics of automated checkout systems. This paper
discusses the trade-off of autonomous onboard checkout versus ground checkout of the
Space Shuttle Systems. Evaluation is made of the feasibility of automatic servicing,
checkout, trend analysis, and fault isclation of fluid mechanical systems., Computer
controlled checkout techniques including Shuttle to GSE electrical interfaces are
examined. New concepts of testing are discussed and compared to previous methods
of automated checkout, the ultimate objective being an optimum Space Shuttle checkout

philosophy.
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INTRODUCTION

The one objective of the Space Shuttle program having the most dramatic
impact on the ground checkout philosophy is quick turnaround. The basic
turnaround time frame is from landing through deservicing, ground maintenance
and checkout, propellant and ecargo loading, and finally to liftoff. The
total lapsed ground time: 14 days.

For quick turnaround, an automated checkout method must be utilized
in ground checkout of the complex onboard systems., This method must be more
than the typical go/no-go type of analysis. It must automatically determine
vehicle system health, trend analysis, and fault isclation down to the Line
Replaceable Unit (LRU). A determination of whether the automated checkout
system should be onboard the wvehicle or on the ground must be made,

The degree of autonomy for any space vehicle is a function of its
capability for self-test., Automatic test capabilities must be incorporated
into the vehicle system at the onset, The basic design of each component
and subsystem should lend itself to onboard test, fault isolation, and trend
analysis, If a system is designed for its operational requirements only,
with test capabilities implemented as an after thought, the design becomes
complex, overweight, troublesome, and in many instances unreliable, Ground
checkout can be divided into the various areas of mechanical, electrical,
and fluid mechanical. We will examine some of the work accomplished to date
in automatic ground checkout, and then address the little known area of N
automatic fluid mechanical checkout as applicable to Space Shuttle and other
space vehicles of the next generatlon.
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AUTOMATIC CHECKOUT TECHNIQUES

A brief lock al past wvehicle checkout systems and at a system proposed
for Shuttle is required to define the checkout configuration that will be
avallable for use on fluid mechanical systems of the future,

At Kennedy Spacecraft Center, an automated checkout system is used for
high bay prelaunch and pad testing of the 3aturn V launch vehicle.l In the
last 20 hours of countdown, the checkout system provides an automated
capability for 85% of the required functions,

A computer and associated equipment required to service and checkout
the Saturn V are located in the Mobile Launcher, A similar computer plus
test consoles are used in the launch Control Center (LCC) 4o monitor and
control the 3aturn V operations. The computers commmnicate via a data link.

Data from the Saturn V Launch Vehicle and the support equipment is
gathered by the checkout system through telemetry and hardwire interfaces,
The checkout system monitors the status of owver 5000 discrete events.

Another example of an existing automated checkout system is the factory
and static test facility used to completely test the Saturn IVB stage during
factory test and to control and monitor the static firing program at the
Sacremento test facility.

The SIVB checkout system contains about 30 units of equipment including
a computer with its peripheral hardware, a computer interface unit, and
operator test stations. The system provides automatic event sequencing,
monitors 1520 bilevel and 127 analog signals, and also uses the computer to
interpret test results, The checkout system interfaces with the SIVB via
many hardwires as well as a telemetry system.

A third computerized system is Acceptance Checkout Equipment (ACE)Y used
to checkout the Apollo spacecraft, The Command Service Module of the Apolle
is checked out by an ACE station containing 25 high and 27 low consoles, 1416
event lights, 216 meters, 160 channels of analog recording, 516 chamnels of
event, recording, and 19 cathode ray tube displays. A similar ACE station is
used for Lunar Module testing.

The ACE system interfaces with the Apollo through carry on support
equipment during prelaunch testing. Each ACE station connects to a computer
complex which controls the flow of commands and data.

The lack of onboard checkout capability on Apolle resulted in the costly
ACE complex which requires a large number of operators., A more sophisticated
onboard system for Shuttle should make a large complex like ACE unnecessary.
It may be, though, that a portion of ACE could be used by modifying it to
interface with the Shutile onboard system.

The present McDonnell Douglas Astronautics Company (MDAC)
concept of Shuttle onboard checkout utilizes a digital computer and data bus,
The onboard central computer complex (CCC) communicates to the subsystem
LRU through a digital interface unit (DIU) which is comnected to the CCC via
the digital data bus. Two pairs of wires comprise the data bus, one for
data and the other for a synchronizing signal,

The DIU recognizes a message directed to it from the CCC and converts
the digital format into a signal type that the LRU can accept., The IRU
response is then changed into the digital format by the DIU before being
sent back to the CCC, Checkout data is integrated with operational traffic
flow en the data bus which connects the CCC to many DIU's,
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A DIU may be either area oriented and serve several LRU's or dedicated
to a particular LRU, In the latter case, the DIU may be built into the LRU
or attached to it. During checkout sequences, the DIU has the capability of
multiplexing signals to and from a number of elements within each LRU.

The exact composition of the onboard checkout system for Shuttle has
not yet been determined., Therefore, the complexity and capability of the
CCC and the DIU's are not finalized. However, checkout techniques under
study can be discussed and compared.

One onbecard checkout method being considered is centralized checkout,

With centralized checkout, the CCC analyzes the raw data from the DIU's to
detect problems or trends. This can include voting the operational outputs

of several redundant LRU's or LRU strings, reasonableness tests, and monitoring
selected LRU parameters, Using a management by exception technique, the CCC
then informs the crew of a problem or potential problem,

Instead of centralized checkout, a DIU may contain a microprocessor that
can perform the checkout analysis. The DIU, after receiving a checkout command
from the CCC, initiates a sequence to check the IRU(s)., After receiving the
checkout data the DIU analyzes the data and reports the status to the CCC.

Built in test (BIT) is another method of onboard checkout. The test
circuitry is within the LRU (and possibly is a part of a DIU incorporated
within an IRU). The BIT is stimulated by an external command or by out of
tolerance LRU parameters, A method of BIT implementaticn is to provide two
operational channels which are compared within the LRU, Unlike channel outputs
cause a no-go signal to be sent,

Centralized checkout can allow the use of less complex DIU's, and off
the shelf LRU's without BIT., System level tests are possible; the output from
a string of LRU’s can be analyzed by the CCC and is a good indication of proper
operatiocn,

BIT, on the other hand, énables problem isclation directly to the IRU,
Checkout by BIT or a DIU microprocessor also requires less CCC capability and
less complex software, LRU bench tests are simpler with BIT since BIT circuits
perform part of the required testing. _

Ground checkout using ground support equipment (GSE) is also p0551ble with
the data bus concept, Utilizing a ground interface with the data bus, the GSE
can perform checkout similar to that of the CCC described above,

Even if GSE is used for ground test, there still must be enough inflight
onboard checkout capability to determine a failure so that a redundant element
can be switched into operation. Using centralized checkout, the redundancy
switching level may be a string of IRU's which could necessitate extra ground
tests to isolate a problem to one TRU.

The more comprehensive testing that may be required on the ground could
be controlled by a ground processor that does not have the size and weight
limitations of the CCC, Such detailed testing could be required during the
maintenance c¢ycle and in prelaunch hangar subsystem testing.

At the launch pad, there exists a need for ground executive control of
the Shuttle even with an onboard checkout system. When no one is onboard during
propellant loading and in case of an abort, certain onboard functions {and also
ones on the ground) must be controlled.

A new GSE concept that may be applicable to Shuttle is that of Universal
Test Equipment (UTE), The UTE would drive a ground data bus tc control servicing
and support equipment as well as interface with the onboard data bus, A minimum
number of operators would be required because the UTE would display status rather

78



than all data available, be automated, and have self-test capability. Included
in the UTE would be <¢olor graphic CRT's, a processor, and a keyboard for
operator entry using 2 high level test language, A feature of UTE is that it
could be used on any equipment that can interface to a DIU, and could be used
for LRU and subsystem testing as well as for system checkout. For LRU testing,
special test equipment may also be required to provide stimuli and monitoring,

Checkout, whether it be onboard or ground, results in the accumulation of
data. In real time, the data is used by the checkout system tc detect and
isolate problems and to detect trends. An important ground function is to process
stored data to provide trend analysis, especially for mechanical systems, and to
keep a historical record of the LRU's. The history can be for each 1RU as well
as for each equipment type.

The handling of data will continue teo be a large task. To reduce manual
effort, it may be worthwhile to provide a computerized data bank for data
reduction, compression, and storage. The data bank could be linked te UTE at
the launch site area, the Shuttle factory areas, and possibly at certain vendors,

In addition te its data reduction role, the data bank could also be used
to generate onboard and ground checkout programs by utilizing proper compiler
sof'tware,

Avionic systems generally lend themselves to the checkout philosophy under
discussion, However, fluid mechanical systems have traditionally been designed
without interfacing capability with an electrical checkoul system. For such a
checkout method to be fully effective, new ideas for electrical stimli and
monitoring must be introduced into the design of valves, regulaters, leak detection
devices, etc,

FEAGIBILITY OF AUTOMATIC FLUID MECHANICAL CHECKOUT AND SERVICING

Fluid mechanical systems have been cne of the larger deterrents in achieving
a complete autonomous onboard checkout system for space vehicles, particularly in
the realm of self-test and fault isolation. The Space Shuttle autonomous onboard
checkout and quick turnaround requirements challenge the fluid component industry
to take a hard lock at the current "state—of-the-art" and what must be accomplished
in order to meet these new requirements.

Onboard monitoring of fluid systems during flight and automatic cryogenic
servicing is within the present capability of most contractors. However, self-
test and fault isolation to the LRU level is a problem area for fluid mechanical
systems, The use of ground carts to supply stimuli for onboard tests is time
consuming due to hookup time, verification of comnmections, and possible contamination
of the onboard fluid systems, Additional test points must be incorporated into
the system so that complete LRU test and fault isolation can be made, The use of
onboard stimuli for fluid systems appears impractical, but this may be because we
think of testing fluid systems with fluids. Let us envision the self-test of
fluid systems through other means such as electrical correlation of mechanical
movements, valve signature traces, ultrasonics, and thin film technology,

Thomas Crapper, the inventor of the valveless water waste preventer, advanced
the state-of-the-art in his field., His ingenious solution, which can still be
observed beneath the 1id of most toilet tanks, depends upon a float, a metal arm,
and a siphonic action to empty the reservoir. The degree of improvement over his
original concept has been minimal, Recently, however, through the interest in
ecology and the concern for conservation of water, a new concept utilizing a vacuum
has been designed. Thus, an envirommental concern stimilated new technology,
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Now the need exists to advance the state-of-the-art of fluid components which
will lend themselves to autonomous onboard checkout, Whose responsibility is
this new requirement? The fluid component manufacturer, the major contractor,
or the Government? It is the responsibility of all of us and in order to
achieve the level which we are seeking we must pool our resources,

Automatic test capabilities must be designed into the vehicle system as
a prime objective. The vehicle engineer can no longer design his system only
for operational capabilities. The determination of the desired degree of
autonomy, whether the vehicle design engineer realizes it or not, falls heavily
in his lap. At the onset of a program, the vehicle system designer and ground
support and test personnel must determine the degree of autonomy the project
will achieve. Designers whe achieved a level of success on past space programs
mast revamp their mode of thinking to design their components to accomplish '
the objectives of automatic checkout., Many wvehicle system can be designed so
that sensors, isolation valves, limit switches, flow devices, and transducers
become an integral part of the LRU, Investigations must be made to determine
the feasibility of testing fluid systems without the application of fiuid
stimuli from an extermal source.

The fluid industry shall remain behind in advancing the state-cf-the-art
only so long as the vehicle designers permit. In early space programs the
design contractor's prime responsibility was limited to design of a lightweight,
highly reliable operational system, The Space Shuitle program is the beginning
of a whole new era which will emphasize reusable vehicles, self-test capabilities,
fault isolation, and trend analysis. The airline induskry years ago realized
that in order to cut costs and reduce down time, spares, and ground test equip-
ment, it had to implement a new concept of onboard testing as a matter of :
economic survival., The airlines have advanced the state of automatic checkout
for their avionic systems and have improvéd the capability of monitoring
nonelectronic systems, Fluid system designers, fluid component manufacturers,
and their customer must now bring the level of self-test and fault isolation of
fluid mechanical systems up to the level of the onboard avionic systems.

The Space Shuttle program must develop real time status monitoring techniques,
automatic checkout capabilities, and fault isolation far advanced to that employed
for any previous space program. No matter how advanced the computerized checkout
system becomes, the subsystem cannot perform a real time status monitoring for
automatic checkout unless the LRU can communicate its health status, During the
design of fluid systems, every consideration of automatic test should be reviewed
and implemented if desirable (See Figure I),

New methods of automatic testing and new concepts in fluid component and
system design must be implemented., Yew concepts of testing fluid components
using thin film transducers, secondary effects, leak debection, application of
valve signature traces as a diagnostic tool, and electrical correlation of
mechanical movement will be discussed, The purpose of this paper is not to
resolve the problems of mechanical and fluid systems, but to discuss new test.
metheds which may be thought provoking.
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COMPONENT IRU DESIGN

The electronic "black box" concept which includes all the wonders of
built in test and self-assessment should be applied to the fluid mechanical
systems, During the design of fluid IRU!s and subsystems, every consideration
of automatic test should be implemented., Each LRU should be designed as a
self-contained assembly which includes all flow, pressure, temperature, leakage
sensors and test points, Pressure and temperature transducers should be
combined into one unit to minimize entry points into the LRU.

The design of an LRU should be such that any part subject to failure may
be replaced without removing the complete assembly. As an example, an LRU
which contains a source regulator, relief valve, solenoid, or pneumatic actuated
on/off valve should be designed such that the faulty seat or failed solenoid
can be replaced without removing the LRU. This concept is somewhat of a "fix in
place" method, If the LRU is designed so that seat and valve stem (which are the
high fail rate items) are removable with the "fix in place" concept, spare parts
cost, maintenance time of cutting, rewelding, XZ-rays, and possible contamination
of the system would be tremendously reduced, For an assurance against leakage,
fluid ILRU's could be welded or brazed into the system., The LRU's could be
designed to include the following considerations:

(a) An ultrasonic device for flow and leak detection will provide

flow data during flight and indicate flow and leakage for onboard
testing, fault isolation, and trend analysis., These units are
light in weight and do not require direct contact with the fluid
media, thereby eliminating potential leak points,

(b) Thin film transducers for pressure and temperature combined into

: a single unit are light in weight {approximately 1 ounce),

are rugged, have better stability, and virtually no hysteresis,
They can be welded in place, thereby eliminating potential leak
points,

(c) Valve signature traces of solenoids will provide trend analysis,

solencid operation characteristics, and add no additicnal weight
to the LRU,

UTTIILIZATTION OF SECONDARY BEFFECTS FOR THE CHECKOUT OF NONELECTRONIC SYSTEMS

New techniques to permit a reduction in testing time, technical skills,
and subsequent cost may be derived by utilizing secondary effects which accompany
the operation of nonelectronic subsystems.

Secondary effects are those phenomena which result from the operation of a
system or subsystem but are incidental to the primary purpose or mission. This
particular category appears promising because it will disclose incipient or
actual failures not otherwise possible with the more conventional primary stimuli
and response checkout techniques.

The utilization of secondary side effects to determine system health is
often employed by technicians, Overheated components detected as an odor or
discoloration, and noticeable sound level changes caused by failing bearings
are detectable side effects, A study by Illinois Tnstitute of Technology? gave
primary emphasis to secondary effects not requiring the physical dismantling
of a system under test and not currently employed in existing checkout operation,
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The technicues investigated include the use of acoustical, electromagnetic,
chemical, and fine particle side &ffects, With all of these technigues,
emphasis was placed on the use of natural spectrum signatures to determine

the status of the system under test. In the areas of electromagnetic and
chemical side effects, technigques that require the use of very simple built-
in "seeds" for remocte fallure indicators were 1nvest1gated to reduce dependence
of matural specirum signatures,

A review of current and past utilizations of secondary effects in the
maintenance, repair, reliability, and quality assurance areas indicated that
these effects are of great value in ascertaining the status of equipment.,

For the most part, however, these effects have not been methodically employed
for the checkoul purposes. Tt also appears that the utilization of secondary
effects is of particular importance for the nonelectrenic systems where built-
in wire iype commumnication paths do not exist. A wide variety of useful
secondary effects exist, many of which can be utilized without extensive
dismantiing of the eguipment. Probably one of the most important advantages
of secondary effects utilization is the detection of precursors of malfunctions
not otherwise possible. TIn the case of automatic checkout, the sensing of
secondary effects can crezte an additional set of “pssudo test points" for a
large variety of components which will ke impractical to implement in the
conventional checkout system.

VATVE STGNATURE TRACES

Valve signature traces can demonstrate the health status of an electrically
operated solenoid., Signature traces are estabtlished diagnostic tools for the
determination of the existing and future performance of electrically operated
fluid valves. Valves usually degrade relatively slowly to a point of malfunction,
progressive galling, slow response, etc, 'The valve signature trace will provide
information for a computer to determine the valve's health status, The
information received from the signature traces can determine:

(d) Flectrical continuity

{b) Valve opening and cleosing characteristics

{c) Stuck or nonoperating valves

{d) Sluggish valves

(e} Valve simidtaneity

(f) Future performance predictions
A perfected analytical technigue through the use of signature traces would
conzerve countless hours of manual test time.

During valve signature sampling, a high sample rate is required because
of the short current rise duration; this duration is dependent wpon the size of
and mechanical forces on the solencid being tested.

When soleneoid field strength is sufficient to overcome the poppet frictional
forces, the poppet movement produces a counter electromotive force (EMF) which
creates a negative slope ("glitch!") in the current trace. This 'glitch" is a
detectable indication of the solenoid health status.

The MDAC-East - Aerospace Ground Fguipment Engineering Department performed
the following tests to indicate the feasibility of Valve Signature Traces.

Figure 11 is a current trace of a nommally operating solenoid valve; the
negative trace or "glitch" indicates the poppet movement,

Figure I1I is a current trace of a failed or stuck valve. Note the smooth
curve {absence of "glitch"),
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Figure IV is a current trace of the same solenoid with added forces
applied to the poppel. Note the additional amount of power and time that
are requived to move the poppet. This 13 one indication of a failing valve.

A conclusion from these tests is that the current traces are feasible
and provide intelligent data but must be traced during the complete operation
time span to be usable, The Space Shuttle orbiter and booster have approximately
LOO electrically operated solenoid valves, Valve signature traces during the
turnaround period with the utilization of a ground computer would give valuable
information, and would take a matter of minutes to cyecle all the Space Shuttle's
electrically operated valves., Information received would be recorded in a data
bank and compared as required.

LZAX_DETECTION

Teak detection is a problem for all areas of space vehicle construction
and test, Leak detection methods are determined by the iype and size of the
vehicie under test, the allowable lesk rate, and the time available to test,
Very minute allowable leak rates are associated with long space mission require-
ments and the hazardous propulsion flulds utilized, To meet the Space Shuttle
turnaround requirements, new methods of assuring vehicle integrity through leak
testing must be derived,

Normal leak test methods include pressure decay, bubbles, and mass spectro-
meter, However, new techniques uniguely suifable to Shuttle must be investigated.

SONIC AND ULTRASONIC TECHNIQUES

Acoustic techniques can be widely used for diagnostic purposes, Some
sounds are very distinct and intense while others are very subtle, The high
pitched sonic hiss caused by escaping compressed gas is gquite wmistaksble,
while small leaks have been detected by measuring ultrasonic sound. Sonic/
ultrasonic leak detectors can be made falrly sensitive and rugged without
requiring skillful interpretation, and remote indication is feasible for many
instances where ambient high frequency levels are not excessive,

Acoustic techniques utilizing ultrasenic flow meters have been used to
measure flow velocity through pipes withoult touching the fluid. The propagation
of sound is influenced by the motion of the media in which it travels. This
effect can be monitered by simple vector addition of sound propagation velocity
and flow velocity., Ultrasonic flow meters have rapid response and freedom from
damage from cryogenic fluids, Erratic or nonfunctioning valves, intermittent
punps, and moeltor performance sre all detectable with flew variation menitoring.
The mechanical deterioration of components due to excessive wear, excessive
vibration, ete., has been proven to be detectable. It appears feasible that
acoustic techniques can be utilized in many areas of fluid mechanical systems
to moniter health and perform trend analysis.

ULTRASONTC TEAK DETECTICN

Ultrasonic leak detection techniquesB held much promise for use on the
booster and orbiter flight vehicles since these techniques will work equally
well in the hard vacuum of outer space or for ground operations.
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Access to the orbiter and booster fluid lines during turnaround will be

limited so an automatic checkout method must be developed. Suitable design
and development work is required to adapt these techniques to Space Shuttle
usage. Fixed sensors attached to the orbiter and booster fluid systems will
enable leak detection and leak location. Fluid escaping through an orifice
will generate sound waves that can be detected by the sensors, and the resultant
output could be fed into the onboard or ground computer,

With the ultrasonic technique, leak detection can be accomplished during
the vehicle maintenance cycle and during countdown prior to the next flight,
Fixed sensors located on each side of flanges on relief valves and near critical
components will also aid in satisfying the automatic checkout and fault isclation
requirements. A sensor near a relief valve will indicate if the valve reseated
in a leak tight condition after a functional test, Oensors will also verify
valve seat condition without dismantling the system, Monitoring of flow and
comparison with anticipated values yield information on satisfactory functioning
of equipment.

NEW CONCEPTS IN LEAK DETECTION

A new concept of leak detection being investigated at MDAC-East considers
the Space Shuttle's onboard leak detection method requirements of low weight
and short test time. It utilizes a thermistor placed in the item under test,

4 change in temperature due to outside test vehicle environment and/or temperature
change due to pneumatic expansion is proportional to the pressure increase

within the test vehicle, The thermistor's resistance decreases in proportion to

a temperature increase. A pressure sensor inserted within the vehicle tank
transmits the swmmation of the pressure change due to temperature effect and
pressure loss due to leakage. The resistance change from the thermistor and the
summation of the pressure sensor is fed into a matrix bridge network where the
variance in temperature will be added or subtracted from the pressure sensor
output to indicate the quantitative gross leakage. (See Figure V)

The major advantages of this leak detection method are: electrical leak
detection of pneumatic systems; temperature compensation; elimination of time
expended for temperature stabilization; and leak detections performed in a
maintenance area,

THIN FIIM TRANSDUCERS

Unavailability of light reliable pressure sensors with good stability and
low hysteresis has in the past limited use of onboard instrumentation. To
verify system performance during test, transducers were often added, thus
inducing a potential leak point and increasing system weight., Frequently just
a pressure port was provided to interface with a transducer connected during
ground testing and removed prior to flight.

A new development in the transducer field is the thin film transducer,

In thin film transducers, ceramic films are vacuum deposited on pressure diaphragms,
accelerometers, load cells, or beam-type pressure sensors, The strain gauge
elements which form the transducer bridge are then deposited on the ceramic
insulator. With the attachment of lead wires, the thin film sensors are ready to
be packaged. At this point, sensors can be placed directly in the component or
LRU, minimizing weight and potential leak points. Thin film transducers excel

over conventional type transducers in stability, hysteresis, and linearity, This
type of transducer will allow system designers to build in lightweight pressure
monitor and test capabilities as an integral part of the system without degrading
operational capability. 87
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AUTOMATIC CHECKQUT OF MECHANICAL COMPONENTS THROUGH ELECTRICAL CORRELATION

If complete autonomy with built-in vehicle stimuli is to become a reality,
we might examine whether functional testing of fluid systems really requires
an external pressure source. For example, is there a meaningful correlation
between electrical input (stimuli) and a mechanical movement (output)? An
electrical stimuli might be applied to the static fluid component under test
and compared to the mechanical response. Through a series of tests, fluid
system component characteristics may be established and subsequently correlated
to the electrical stimuli allowing the observed fluid system response to be
utilized for self-gssessment and fault isolation, A planned test by MDAC-East
involves incorporation of a solencid on a relief valve to determine if the
stimuli applied to the solencid has a direct correlation to the force required
to displace the relief valve spring poppet. The weight increase to the relief
valve by the incorporation of a solenoid is at this time an unknown quantity,
but if we do not venture into various experimental programs, we will never
find methods of decreasing overall operational costs,

OTHER CONSIDERATIONS

In addition to the purely technical considerations of a spacecraft checkout
philosophy, funding considerations and schedule milestones are interrelated as
major controlling factors. For some requirements, such as an autonomous checkout
capability while in space, no compromise is permissible, However, the cost
penalties imposed by onboard checkout equipment must be determined and compared
with the operational costs of a ground checkout approach. Development times
may not be adequate to resolve the attendant problems associated with new test
equipment or test methods, so that the more feasible approach might be to go
with a less sophisticated checkout system and update flight and ground checkout
equipment in a later version of the flight system. Studies should be of sufficient
detall to identify advantages and disadvantages in specific meaningful terms
such as "payload sacrifice per pound of onboard checkout equipment," "hours of
ground turnaround time utilizing onbocard checkout equipment,'" and "hours of
ground turnaround time wutilizing ground checkout equipment." These terms can all
be related to dollars,

OPTIMUM SPACE SHUTTLE FLULID MECHANICAL GROUND CHECKOUT PHILOSOPHY

What is the optimum Space Shuttle fluid mechanical ground checkout
philosophy? Somewhere in between the extremes of onboard/automatic and ground/
ranual checkout must lie the practical answer: how much testing should be done?

Past test philosophy has been one of test, test, retest, and test again,
Highly reliable components have been designed for the various space programs
and for the commercial airline industry. Let us use these components, restructure
our thinking, and restrict our level of checkout to minimum essential levels as a
start toward the optimun philosophy.

Secondly, we must continue to develop and use the computerized checkout
technigues, The use of the computer has had dramatic impact on the Saturn/
Apollo program. "The Saturn Ground Computer Checkout System checks valves,
transistors, microelectronics, miles and miles of wiring, transducers, and all
of the movable and nonmovable parts and circuitry in a real situation with
each part operating in conjunction with all of the other eight million parts.
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Four man-years of computational work are done in the relatively few hours of
countdown before launch, s Thirdly, we must utilize new checkout techniques.
The Space Shuttle fluid mechanical systems require a high degree of onboard
real time checkout, fault isolation, and readiness assessment. Application
of secondary effects, signature traces, sonic and ultrasonic techniques, and
built-in thin film transducers will help in achieving this capability, while
having a negligible effeet on vehicle systems weight or system reliability.

A key factor is that, from the beginning, subsystem cost, weight, test para-
meters, automatic checkout, trend analysis, and operational capabilities must
be part of the vehicle basic design concept., Evaluation groups consisting of
flight test, operational, maintenance, GSE, and subsystem design personnel
must take an active part-in the design of the wehicle system if we are ever
to reach our goal.

Reports made as long as 6 years ago by government and private institutions
reveal a tremendous amount of study on automatic checkout of nonelectronic
systems. The reports referenced herein are samples of the methods that can be
utilized. However, if the system designers do not, or will not, investigate
or implement these advancements, usable technology of automating fluid mechanical
systems for checkout will remain static.

Our goal is a fully automated onboard checkout of fluid mechanical systems.
Based on present levels of technology, cost limitations, and schedule consider-
ations, we must approach this ideal goal in logical steps, The fluids industry
must develop hardware capable of automatic checkout utilizing the previocusly
mentioned techniques, and responsible contractors must continually strive for
the fully automated fluid mechanical system,
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D. J. Hartung and C. R. Browning
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ABSTRACT

This paper is directed toward definition of the logic device required for processing
basic performance data originating at a mechanical line replaceable unit such as a
pump. pneumatic regulator, valve, et al. Sensor data resulting from state-of-the-
art instrumentation techniques were examinedin detail to determine logic device physi-
cal and functional configuration. Functional integration of this concept is consistent
with advanced checkout philosophies. Three logic device implementation concepts were
considered, and each was found to have application depending upon mechanical compo-
nent density, complexity, and/or similarity. Guidelines for application of each con-

cept are discussed.

INTRODUCTION

Space programs of the post-Apollo generation include requirements for re-usable ve-
hicles with a fast turn-around. These requirements impact the existing philosophy
pertaining to vehicle launch and in-flight readiness. Maintenance and checkout {ime
will be at a premium, not only for flight hardware, but also for the non-flight, real-
time ground support equipment. Existing mechanical devices which are essential to
both airborne and ground equipment operations do not have the capability to communi-
cate required status parameters. Thus, techniques far superior to those used for
previous space programs must be developed and implemented for mechanical device
readiness assessment. These program requirements dictate the need for automatic,

self-contained readiness assessment of ground and {light hardware.

While the capability for self-contained readiness assessment has existed and has been
incorporated to varying degrees in elecirical/electronic equipment for some time,
little has been accomplished relative to mechanical components. Application of readi-
ness assessment philosophy to mechanical components will provide operational status
(wo. no-go, caution) and maintenance information for critical Line Replaceable Units

(LRU's). Selective instrumentation of the LRU's performance parameters, modified
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by operational tolerances and coupled with a logic device, can provide this confidence
data as well as 'predict”, detect, and isolate faults. In addition to providing compo-
nent status 'data, the logic device will receive, decode, and process commands neces-
sary for LRU control and will operate as an integral part of an overall system contain-
ing a number of varied, interrelated critical components. The specific functions to be
accomplished by the logic device depend primarily upon the total system philosophy

and complexity of those component parameters required for fault prediction.

Information contained in this paper was derived from thé General Eleciric Company

study performed (during the period April 21 through November 13, 1970) for the
John ¥, Kennedy Space Center, "Technigues for Automatic Self-Contained Readiness
Assesément and Fault Isolation for Ground and On-Board Mechanical Systems'. All
backup details are documented in Phases I and TII Progress Reports 70-831-892 and

70-831-894, dated 20 July 1970 and 19 October 1270, respectively.

The objective of that study was to provide direction for achieving the technology by
which mechanical devices' performance parameters or discriminants can automati-
cally, and in real time, be détermined and evaluated. The performance parameters
include data required to check out and monitor these components as well as those
needed to predict and isolate faults, Implementation of this technology will improve
the capability for malfunction isolation and detection, permit maintenance on an '"as
required" basis rather than routinely, and reduce checkout time at a potentially lower

cost with increased mission reliability.

REPRESENTATIVE MECHANICAL DEVICES

The approach of the General Electric Company study was to define those Saturn V me-
chanical components in use on Launch Complex 39 on-board and ground systems and to
assume that the conﬁguration: of mechanical devices used on near-future space pro-
grams will have, for practicaﬁl considerations, the same general functions and charac-
teristics. Therefore, LC-39i mechanical device performance monitoring limitations
must be resolved before mechanical readiness assessment of future space programs

can be achieved.

Initially, a survey of Launch bomplex 39 identified 183 on-board and ground systems,
42 of which were primarily mechanical. These systems were found to contain over
20,000 mechanical components representing 43 generic families such as accumulators,

actuators, valves, ete.
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Utilizing selection criteria tabulated in Table 1, 36 mechanical devices were selected

as representative of the total population,

Table 1

Representative Mechanical Device Selection Criteria

Primary ConsiDERATIONS

Was mecranicaL pevice a Line REPLAcEAsLE UniT ?
Hap simicar LLRU BEenN IDENTIFIED AS REPRESENTATIVE 7
Dir LRU HAvE A HIGH FAILURE RATE ?

Dic LRU REPRESENT A LARGE POPULATION ?

Was LRU very ExPENSIVE TO BUY OR REPAIR ?

Was LRU 7I1ME CONSUMING TO REFAIR OR VERIFY STATUS ?

Seconpary CONSIDERATIONS

LRU oPeraTiONAL PRIORITY.
AvailtasiLity oF LRU peEscriPTIVE DATA.
PrReEVENTIVE MAINTENANCE REQUIREMENTS,

FLDW MEDIUM AND ACTUATING INPUT,

Repalr aAnND cHECKOUT TIME.,

The numerical distribution of the representative mechanical devices selected, by ge-

reric family, was:

Generic Family Quantity Generic Family Quantity
Accumulator 2 Fuse, Flo 1
Actuator 4 Heat Exchanger 1
Blower, Fan 1 Motor 2
Compressor 1 Pump 2
Controller 1 Regulator 3
Damper 1 Valve 15
Filter 2

These 36 mechanical devices were subjected to a detailed analysis to establish func-

tional parameters necessary for readiness assessment and fault isolation.

MECHANICAL DEVICE READINESS ASSESSMENT REQUIREMENTS

To ascertain whether a mechanical device is in a go, no-go, or caution status requires,

first. an identification of those functional parameters which must be monitored to
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determine readiness assessment. The information necessary to define readiness as~
sessment requirements either in a static or dynamic operational state was found to
include :

a. Part Identification—The mechanical device (LRU) or piece part of the LRU

under considera-;ign, e.g., a valve or the poppet, ball, guide spring, etc.,
of a valve. |
b. Failure Mode—Particular form or manifestation of the LRU's inability to per-

form its expected action or function.

¢. Requirement Parameter—The most basic measurement which can be made to

detect the failure.mode under consideration.

d. Parameter Limits—Prescribed boundaries which define go, no-go, and cau-

tion limits. These limits are not necessarily absolute values, but can be

relative to some other parametric value.

A detailed analysis tabulating the above items was completed for each of the 36 repre-

sentative mechanical devices which are representative of over 20,000 actual mechani-

cal devices.

Seventeen separate requirement parameters were identified for the 36 representative
components. The numerical éommonality of these parameters is depicted in Figure 1.
It should be noted that a specific parameter may occur in more than one manner for a
given component and may represent vastly different properties iﬁ particular applica-
tions. For instance, the parameter of force may represent seal compression, torgue,

or actuator output force.
The representative mechanical devices examined possess typically from 4 to 10 of
these parameters with 6 being the average number which must be evaluated to achieve

total readiness assessment capability,

LOGIC DEVICE APPLICATION

The deployment of a logic device which will satisfy the overall functions of readiness
assessment, monitoring, and controlling of critical components is dependent primarily
on the overall system philosophy, component density, and similarities. Although there
are many similarities between the three implementation concepts depicted in Figure 2,
the logic device discussed herein is in reference to Concépt 1 which utilizes a dedicated
logic device for each critical component. The logic device described assumes that the

included functions will be performed in close proximity to the mechanical component.
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CONCEPT #1 - LOGIC DEVICE FOR EACH COMPONENT
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be established. Once this is done, test algorithms and limits can be selected with a

good probahility of success and can be then optimized experimentally.

Logic Device Status (Self-Test)

Each logic device will be capable of determining internal status and operational readi-

ness by self-test.

Bidirectional Communications

The two-way communications function will be performed in a manner compatible with
the existing data bus concept. The data bus concept is defined as a single cable which
provides serial data transfer, in either direction, between any of the data bus parallel
interfaces. The bidirectional communication function includes receiver, decoder,
verification, transmission, control, and buffer subfunctions, The data bus could be
redundant with appropriate encoding /decoding modifications to the bidirectional com-

munication function.

Stimuli Generation and Distribution

Primary stimuli are the result of commands generated at an external source, received,
decoded and verified via the bidirectional communication and then transferred to the
distributor in a form ready for execution. Secondary stimuli are commands generated
internal to the logic device and are necessary for stimulating the mechanical compo-
nent for determining readiness. Both primary and secondary stimuli can be discrete

or analog.

Measurement Acquisition and Data Processing

Accomplishing component readiness assessment is entirely dependent on determining
the component status indicators, selecting the proper sensors, and then selecting the
processing necessary to isolate the discriminant. A logic device discriminant is de-
fined as processed information, derived from data collected at the component, that

can be correlated to the performance and operational condition of the component,

Figure 4 represents discriminants based on three sensor categories, specialized ana-
logs. analogs, and discretes. The selection of the discriminants and transducers
which will provide component readiness assessment varies from component to compo-
nent. The General Electric Company study indicated that a typical component would

require six monitoring points: 1 specialized analog, 2 analogs, and 3 discretes.
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In many instances the same computation or preprocessing function could be performed

with either analog or digital techniques. In these instances the logic device would

utilize the technique or combination of techniques that best satisfy the design objective.

d.

Specialized Analogs—Specialized analogs are considered to be complex wave-

forms such as an accelerometer output used in structure borne acoustics with
a frequency content of 0 to 50 kHz. Capability of the logic device includes the
detection of ;

e RMS signal levels,

® Signal levels within selected frequency bands.

e Irregular transients.

e Transient patterns.

Analogs—Analogs in this category are considered to be of low frequency (0 to
1 kHz); such as those resulting from temperature, pressure, and flow sensors.
Frequently, information pertaining to the mechanical component status, par-
ticularly fault prediction, can be determined by isolating those discriminants
contained in low frequency analogs, Capability of the logic device includes
the detection of :

e Amplitude.

e Slope.

e Delta between identical functions.

e Correlation between different functions.

Discretes—Discretes in this category are considered to be event type such as
those used for sensing discrete liquid level, valve closures, and other dis-
crete sensors used primarily for component monitoring as opposed to readi-
ness assessment. Capability of the logic device includes the detection of::

e Discrete changes.

L Discrete sequences.

LOGIC DEVICE PHYSICAL CHARACTERISTICS AND COST

The logic device is critical to the success of automatically determining component

readiness. The logic device characteristics (size, weight, and power consumption)

are critical in determining the application or deployment of the device in a total system.

Beevause of this criticality, a "preliminary"' assessment was made relative to its char-

acteristics and material cost based on existing technology and off-the-shelf piece parts.
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Characteristics and cost of the logic device are based on the logic device functional

requirements previously discussed and the assumptions and supporting rationale uti-

lized to establish the characteristics which follow:

a.

Logic Device Processing Capability—The capability of the device was defined

to satisfy the processing requirements for one relatively complex component,
requiring those diagnostic routines necessary to identify the discriminants as
depicted in Figure 4.

Dedication of Logic Device—For the purpose of this exercise, the logic device

was considered to be dedicated to the component (i.e., Concept 1), The logic
device would be capable of processing: ‘
® 6 Transducer Inputs:

® 1 Specialized analog.
m 2 Low frequency analogs.
] 3 Discretes. -

e 1 Output Commands:

® 2 Analog stimuli.
@ 2 Discrete stimuli,

e 1 Serial Bidirectional Digital Data Bus Interface with:

g Multiple inputs (commands).
Multiple outputs (status, performance data}.

Building Block Construction—The logic device would be developed from a

family of functional modules which will take maximum advantage of the rapidly
improving large-scale integration semiconductor technology.

Modular Organization—The logic device would be organized in a modular ar-

rangement employing a minimum number of unique building block modules.
The functional modularity will provide overall logic device flexibility by per-
mitting incremental configurations that would satisfy specific operational and
component readiness assessment requirements,

Memory Selection—Based on the functional requiréments , 4 combination of
Read-Only-Memory (ROM) and Random-Access-Memory (RAM) was selected.

The selection criteria utilized was power consumption, size, cost, and speed
although speed was not a major consideration. The selection resulted in
2048 8-bit words of static metal-oxide semiconductor RAM and 2048 8-bit
words of ROM.

Stimuli Distribution—Stimuli, both analog and discrete, would be limited to

100 milliamperes from the logic device. For those stimuli requiring addi-
tional power, the logic device will provide a pilot control to a stimuli power

source external to the logic device.
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g. Storage-—No off-line storage will be required by the logic device. Long-term
trend analysis will be accomplished by a higher level computational device.

h. Piece Part Selection—Only off-the-shelf piece parts were selected, and quan-

tity purchase prices were used.
i. Power—Regulated +15 volts and +5 volts will be provided to the logic device,

j. Analog Conversion—Analogs were converted to 8-bit binary coded decimal

form. The 8-bit resolution or an output accuracy of 0.4 percent was felt to

be adequate for a majority of the applications.

Table 3 depicts the summary results of this exercise broken down by functional ele-

ments of the logic device.

Table 3

Logic Device Characteristics and Cost

MaTerialL CosT
FuncTion Sze Weiont | Powen EsTimaTeES
(Cusic Inches) | (Pounps) | (WarTs) (DoLLars)
BinirecTtionat ComMmunIcAaTION 16 0.5 1 500.00
StimuLl GeneraTion anp DisrT. 8 0.3 i 200,00
Processing 64 4.0 4 2, 000,00
MeasuremenT AcaUISITION 34 2.4 7.4 1, 150.00
Memorv 20 1.0 13 1, 760,00
Secr-TesT 8 0.3 1 250.00
P ackacing 64 1.0 - 500. 00
Torac 214 9.5 27.4 6, 300,00

CONCLUSIONS

None of the representative mechanical components was determined to be completely
adaptable to readiness assessment by use of existing evaluation techniques. The range
of adaptability was from 29 percent to 89 percent with the average being 70 percent.
Looking at the total group, an additional 25 percent can potentially be obtained by de-
velopment and application of new techniques; 4 percent can potentially be obtained by
component redesign: and 1 percent can be obtained by performance of the function by
alternative methods. Figure 5 displays the relative measure of achievement ol readi-

ness assessmept by each of these methods.
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(70 PERCENT)

ExisTine TECHNIQUES

(25 PERCENT)
MNew TecHniQuas

(4 PERCENT)
RepesiaN

{1t PERCENT)
ALTERNATE METHODS

Figure 5., Methods for Achieving Mechanical Readiness Assessment

While in theory, all of the representative components have the potential of being com-
pletely adaptable to automatic readiness assessment, this claim must be qualified.
First, considerable development work must be done to advance techniques such as
ultrasonic imaging, optical interferometry, and pattern recognition of images before
they can be utilized in many of the applications. Second, to achieve problem detection
and malfunction prediction in a meaningful manner, extensive testing of the various

mechanical devices will be required in order to identify the significant discriminants.

A quantitative evaluation or comparison of the discriminants must also be made; that
is, what size fault can be detected, what size fault is significant in each particular

case. and at what rate will a detectable fault degenerate to a no-go condition?

The logic device hardware and technology presently exist to accomplish mechanical
device readiness assessment. Minimum packaging size would be approximately
210 cubic inches, cost (in production quantities including manufacturing) would be

about $12,000 each, and each would consume 27 watts of power,

A reduction in logic device size, weight, and power consumption could be made possi-
ble by :
a. The development of large-scale integrated circuits and hybrids specifically

tailored to the logic device application.
b. Dedicating the design for each logic device to satisfy a specific mechanical

component.
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The first approach is recommended because it would significantly reduce the physical
characteristics of the logic device and because the developmental cost could be amor-
tized over many logic devices. The latter approach is not recommended primarily
from the standpoint of the expense incurred for the design and development of many

special-purpose logic devices.

State-of-the-art technology is changing rapidly in the area of semiconductors; making
possible, in the next year or two, the development of logic devices with increased
performance and reliability, while undergoing an estimated 30 percent reduction in

package size, weight, and power consumption.
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System concepts may dictate that much of the processing function should be accom-
plished in a centralized processor as depicted in Concepts 2 and 3, Table 2 highlights

the conceptual differences.

The typical application of the logic device may require varying degrees of dedication,
measurement acquisition, and processing capability, For this reason, the logic de-
vice design should be modularized, to the extent possible, such that the logic device

configuration can be selected hased on the LRU requirements for readiness assessment,

LOGIC DEVICE FUNCTIONS

Mechanical device readiness assessment parameters can be selected, and instrumen-
tation is available, or can be developed, to provide electronic presentation of those
parameters; however, processing and interpretation of this data, to translate it into

meaningful go, no-go caution signals, must employ digital logic.

The logic device provides those functions necessary to automatically determine the
operational status of the mechanical component. These functions are:
e Measurement Acquisition. |
Data Processing.
Status Processing.
Mernory and Software.
Self-Test.

Bidirectional Communications.

Stimuli Generation and Distribution.

Figure 3 depicts the logic device and its functional interfaces.

LOGIC DEVICE CAPABILITY

Status Processing

Status processing functions within the logic device will provide the component status
continuously or when requested by an external source. The component status will be
one of go, no-go, and caution. The status of the component will be formatted into a
digital word compatible with data bus techniques. The go status indicates that the
component is well and that no degradation has been sensed either by direct measure-

ment or by the diagnostic routines within the logic device,
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Figure 3. Logic Device Functional Interfaces

The caution status indicates that component performance degradation has been sensed
either by direct measurement or by diagnostic routines. The caution status further
indicates that the component is still capable of performing its intended function within
its operational limits. The caution status will be accompanied by an explanation iden-
tifying the component approaching possible malfunction and the cause, determined by
the logic device, thus providing fault prediction at the component or line replaceable

unit level,

The no-go status indicates that the component is not capable of operating within normal
operational limits. The no-go status will be accompanied by an identification of the
malfunctioned component and the cause. determined by the logic device, thus providing

fault isclation at the component or LRU level.
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Memory and Software

Memory and software contained within the logic device must be adequate to accomplish
the processing functions. This includes memory for program storage as well as data
storage for stimulus distribution and generation, measurement acquisition, data proc-
essing, status processing, bidirectional communicaﬁon, and logic device self-test.
Because of the number of sensor techniques and the processing techniques required to
assess the readiness of a given component, the software development will require an
extensive verification program to thoroughly evaluate the logic device-mechanical
component relationship. This evaluation will be necessary to confirm the test point
location, sensor selection (sensitivity and selectivity), diagnostic routines, signal
conditioning, stimulus generation, and the overall ahility of the logic device fo assess
the readiness, predict failures, and isolate the fault. Complete specifications of test
algorithms will requife that special attention be given to each logic device input when

component assessment is completely automated.

Problems can be anticipated in the generation of algorithm specification. It is gené,r—
ally difficult to specify necessary and sufficient test conditions or limits for all possi-
ble states that may exist. Further, there are no clear-cut rules or guidelines as to
what constitutes a reasonable limit specification, as an example, complex wave-form ‘
analysis. This means that the logic device must have the necessary flexibility to méet -
unspecified requirements with a minimum effort. Experience with logic devices indi-
cates that programmable memory may be replaced with Read Only Meihory (ROM) at
that point in time that the full test and diagnostic procedures for a particular device

have been tested, tried, and found to be true.

Finding the most effective discriminant or discriminants for each mechanical compo-
nent, in the operational environment, is a problem having two basic solutions. Statis-
tically, if a sufficiently large sample of signatures from good and malfunctioning com-
ponents is available, it is possible to evaluate a number of discriminants and to select
the most effective. The success of this approach depends entirely upon a good statisti-
cal sample. In many cases, such a sample is not available or would be unreasonably
expensive to obtain. A second approach is based on the understanding ot the mechani-
cal coniponent and the process by which a particular signature is generated. This
usually requires a thorough study of the mechanics of the component, operational char-

acteristics, and environment, so that a model for normal and abnormal signatures can
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A STUDY OF TECHNIQUES FOR
THE AUTOMATED VERIFICATION OF
REDUNDANCY

F. A, Ford
T. W. Hasslinger

Radiation, Incorporated, Melhourne, Florida

W. R. McMurran

NASA, Kennedy Space Center, Florida

INTRODUCTION

This presentation is concerned with the
problem of verifying the operation of equipments
in redundant configurations. The facts presented
are essentially those developed by a NASA-
sponsoted study addressing this problem. See

- Figure 1.

The presenter was Dr. Alan Ford, of

Radiation Incorporated, who served as study
director on that study.
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Figure 1
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DISCUSSION

The stringent requirements placed on equipment
reliability and availability by operations such as
that of the space shuttle necessitate the extensive
use of redundant equipments, While reliability
goals may be apparently achieved by increasing
redundancy, in practice, the attendant increase in
system complexity may tend to degrade the accuracy
of knowledge concerning system readiness. This
knowledge may be required for mission planning,
such as abort or go~no-go decisions, for decisions
concerning whether to go to a backup system -- and
if so which system; or for maintenance purposes.

Whete one-shot missions are concerned,
repetitive checkout is not required and long count~
down periods allow redundant equipments to be
verified individually, with any system reconfiguration
which is necessary for checkout being perfectly
allowable. Indeed, in many instances, checkout
of redundant equipment after installation may not
be necessary at all. See Figure 2.

However, in the cases of ground support
equipment which is employed on a repetitive basis
and of reusable spacecraft, periodic checkout becomes
a requirement. Furthermore, short turnaround times
and the desire to make near real-time decisions on
equipment performance for mission planning putposes
in large part rule out the option of reconfiguring
systems for checkout. These considerations have
prompted the investigations repotted here.
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The problem addressed here is that of
gaining status information concerning
redundant equipments. Xnowledge of

status maybe required for mission planning,
such as go, no-go decisions, determinations
of when to go to a backup systems and to
which system to resort, and for maintenance

purposes.

PROBLEM

REUSABLE REDUNDANT EQUIPMENT
FUEL VALVES
"HOLD-DOWN ARMS
COMMUNICATIONS DEVICES
DATA TRANSFER DEVICES
KNOWLEDGE OF STATUS NEEDED
MISSION PLANNiNG

USE OF BACKUP SYSTEMS
MAINTENANCE PURPOSES

Figure 2
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While several varieties of checkout equipment
are presently in use, it is true that none are capable
of verifying redundancy without disrupting the system.
See Figure 3. In general, they are capable of
assuring that a function is available, but where
several items are capable of performing the same
function, no indication of which ones or how many
of those items stand ready to properly execute the
function may be derived. The major questions to
be answered then are the following: See Figure 4.

a. Among existing equipments, which are
adaptable to redundancy verification?

b. What methods of verification are to be
favored and what are the advantages
among the various techniques?‘

c. What features should be incorporated
into redundant designs in order to assure
that the resulting equipments will be
verifiable?

As a first step, consider the features which
characterize a redundancy design. The list
includes load sharing, degree of redundancy,
distinguishable outputs, recovery time, and
numerous others. See Figure 5. When such a
list is investigated item by item, it is discovered
that only four features require attention in order
to consider a redundant configuration with regard
to its verification. These are: See Figure 6.
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Short turnaround times, such as those
associated with shuttle operation,
force a need for status verification
without system reconfiguration. WNo
existing egquipment is capable of
verifying the level of redundancy
present or operating.

VERIFICATION WITHOUT DISRUPTING SYSTEMS

Figure 3
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The questions presented are:

a) Of existing equipments, which are
adaptable to verification?

b) What verification methods are to
be favored and what are the relative
advantages among the techniques
available?

¢) What design features should be
sought in future equipment pro-
curements in order to assure

adaptability to verification
equipment?

- QUESTIONS

EXISTING EQUIPMENTS ADAPTABLE?
VERIFICATION METHODS TO BE FAVORED?
ADVANTAGES AMONG VERIFICATION
TECHNIQUES?

DESIGN FEATURES TO ASSURE
ADAPTABILITY?

Figure 4
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One may compile a long list of features
which characterize a redundancy design.

FEATURES WHICH CHARACTERIZE
A REDUNDANCY DESIGN

Load Sharing Distinguishable Outputs
Back-up Capability Recovery Time

E{c.

Figure 5

116



Only four of the many features are
important for the purpose of verification.

FEATURES IMPORTANT TO
VERIFICATION

Distinguishable Outputs' e Failure Detect Scheme

Verification Policy e Output Variation

Figure 6
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Distinguishable Outputs

Whether the individual outputs of the several
redundant items can be distinguished one from the
other has a heavy influence on the verification of
those items. If only 2 common output from a group
of redundant equipments is available, for one thing,
it is obviously impossible to trace a failure to one
of those items.

Output Variation

It is important to know whether the output of

a redundant set of equipment varies with the numbey e

of properly operating elements of that set

Verification Policy

Whether it is necessary to petform verification
on a continuous basis or only on a periodic basis
will influence verification design.

| Fa.i lure Detect Scheme

The verification approach will be influenced
by requirements imposed as a result of the failure
detect scheme; i.e., it is desired to know the
status of each element or only that a given level
of operating redundancy is available (perhaps two
out of three).
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Of these four features, only two, distinguishable
outputs and output variation are intrinsic to the
redundancy design. The other two are fixed by the
requirement of the veritication process.

By setting up a dichotomous situation with regard
to each of the four features above and enumerating all
the possible combinations of features, mutually
exclusive classes for redundancy (with respect to the
needs of verification) may be established. These
classes are defined in Figure 7. The figure should
be tread, for example, as a class A situation being
one whetrein the outputs/effects of each redundant
element are distinguishable, it is required only to
know the number of operable elements and not the
status of each element, continuous verification is
required, and the output of the redundant set varies
with the number of operational elements in the set.
Several combinations of features lead to situations
which are inherently unverifiable. These situations
have been lumped together into class H. These
definitions are important in that they form a basis
for discussing redundant situations which is independent
of the function and form of the redundant elements and
in that unverifiable situations are identified.

A design process, a general approach to the
problem of designing a verification system has heen
defined. The process is outlined in Figure 8. An
important feature of the process is the basic division
of the problem into twe probiems, the set problem
and the group problem. While no formal definition
will be offered here, the group problem is the large,
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A general process for designing verification
equipment has been established. The overall
problem may be treated either as a set problem
or as a group problem. Its treatment as one
or the other of these will be dictated by
characteristics of the redundancy to be
verified.

Design Inputs

i g,
i g
¥ £
2 t
) ¥
& £
T -t Bt
i -
1 "

i Set |
Problem

VERIFICATION
DESIGN PROCESS

j Group ¢
i Problem |}

L MR,

Trade-Offs
&
Feedback

Final Design

Figure 8
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general problem (a group may contain several
separate occurrences of redundancy and some
may be internal to others) and the set problem
is the special, but frequently encountered,
prohlem of a single occurrence of redundant
equipment which may be verified independent
of other occurrences of redundancy. See
Figure 9. A group may contain several sets
but not vice versa. As an example, three logic
modules arranged in a majority voting manner
would constitute a simple set. It is the set
problem which has received the most attention
in this work,

By considering what is truly necessatry to
derive a statement of operational integrity of
redundant equipments, a general model for the
verification process has been developed. This
mode! pictures the process as consisting of five
functions. See Figure 10. The first of these
is Coincidence Develiopment, where some type
of comparison is formed. The second is
Parameter Estimation, basically a smoothing
operation, The third function is Mapping to
Conditional Status. In this function, a state-
ment of operational integrity is arrived at from
the information developed in the two previous
functions. This statement must be made on a
conditional basis in many cases, because, for
example, a "bad" output can be taken as an
indication of improperly operating equipment
only if it is known that the input to that equip-
ment is "good." Rather obviously, then, the
fourth function is that of Status Resolution, a
function which removes conditionality from the
statement. The fifth and final function is that
of Status Reporting; it encompasses the machine/
man intetface. The function of Coincidence
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A simple set of redundant equipment contains
no redundancy within any given element. A
group of redundant equipment may contain
several various occurrences of redundancy.

ELEMENT
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Figure 9
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Development has the strongest influence over
redundancy design since it is the function which
interfaces with the equipment being verified.
See Figure 11.

Within the Coincidence Development function,
comparisons may be developed in one of three
ways; the comparison may he between (ot among)
the outputs of an equipment being verified,
between such an output and a reference, or between
the input and output of an equipment being verified.
From these three basic methods of comparison,
categories for Coincidence Development techniques
have been established. These are listedon
Figure 12.

In order to provide the information necessary
for selecting among the Coincidence Development
techniques available, bases for comparison have
been developed and appear on Figure 13. Each
of the techniques have been investigated with
respect to these items,

Realizing the advantages and limitations of
each of the techniques, a statement of the appli-
cability of the various techniques has been set
forth in the matrix of Figure 14. [t may be noted
that not only the class of redundancy being verified,
but also the type of signal used for verification are
important to the selection of a Coincidence Develop~
ment technique. See Figure 15.

A process for selecting among the Coincidence
Development technigues available is shown in
Figure 16. The tenant signal is that signal which
wotild exist in the system in the absence of a need
for verification; i.e., not a signal injected for
verification purposes.
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One may form a categorical listing of
techniques available to perform the
function of Coincidence BDevelopment.

COINCIDENCE DEVELOPIMENT TECHNIQUES

QUTPUT/OQUTPUT COMPARISON
Compare de (Time}

Voting (Time) |
Crosspower Spectral Anclysis (Frequency)

. OUTPUT/REEERENCE COMPARISON

Value Checks Sequential (Time)
Value Checks Nonsequential (Time)
Coding {Time)

Signal Form Analysis {Time)
Spectral Analysis (Frequency)

- OUTPUT/INPUT COMPARISON

Inverse Transform {Time)
Correlation {Frequency)

Figure 12

127



Failure Types Detectable - Can the technigue
aid in determining what has gone
wrong, or only indicate that something
has gone wrong?

Shareability = To what extent must equipment
to implement this technique be
tailored to the equipment being
verified?

Type I & Type II Errors - How prone is this
technique to making verification
errors? ‘ .

Assist in Status Resolution - Does the use of
this technique decrease requirements
on the Status Resolution function?

Complexity - How simple or complex is the
implementation of this technique?

Digital Implementation - Is this technigue
amenable to digital implementation?

Minimum Sampling Rates - What restrictions are
placed on minimum sampling rates by
the use of this technigque?

Unsymmetrical Redundancy — If the redundant
elements are not identical, will this
~ influence the use of a given technique?

BASES OF C
DEVELO P

PARING COINCIDENCE
ENT TECHNIQUES

Failure Types Detectable e Complexity
Shareability ® Digital Implementation
Type | and Type Il Errors e  Minimum Sampling Rates

Assist in Status Resolution e  Unsymmetrical Redundancy
Figure 13
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An applicability matrix has been developed

to express ranges of adaptability of the
various techniques for Coincidence Development.
This adaptability is expressed in terms of

the properties of the signal to be used for
verification and 'in terms of the redundancy
categories or classes which were established
earlier.

APPLICABILITY MATRIX

Signal Properties

Redundancy
Categories

Candidate
Techniques

Figure 14
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| p SIGNAL PROPERTY. ” TENANT SIGNAL

A process for the selection of coincidence
development technigques has been devised.

The required inputs to the design have

been defined as have the interfaces between
the user and the designer of the verification
equipment. The tenant signal is that signal
which exists in the equipment being verified
in the absence of any requirement for verifi-
cation; i.e.,, the signal that would be there
anyway.

FOR
VERIFICATION

‘L |

APPUCAB[LITY &REDUNDANCY CLASS

MATRIX
DESIGN
INPUTS
— DESIGN REQUIRED DESIGN
CONFIDENCE
OFFERED CONFIDENCE

:

CAPABILITIES 4& CONSTRAINTS

AND
FEATURES

'

Figure 16
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After the Coincidence Development function
forms a comparison, and after the results of that
comparison are smoothed hy the Parameter Estimation
function, Mapping to Conditional Status functions
as a simple partioning process. It will often be
desirable to use two or more properties of a signal
in order to derive a statement of status. This
results in a multidimentional status variable,
the status variable being the output of the Parameter
Estimation function. When the status variable is
multidimensioned, it will generally be possible to
set up a truth table to transiate measurements into
a statement of conditional status.

The achievement of continuous verification will
frequently be a very difficult task. The question
of what degree of mission success is attainable if
only periodic verification is employed was addressed.
The result is a set of curves, an example of which
appears as Figure 17. The likelihood of mission
success, 1-a, appears as a parameter with the time
between verifications, T, being a function of the
mean time between failures of an element in the
redundant set. Resulits are available for mission
success criteria which require one of two, one of
three , and two of three (corresponding to the majority
voting case) redundant elements to operate success-

fully.

~In summary, this work has resulted in a meth-
odology for the design of redundancy verification;
it has provided means for identifying situations which
will be univerifiable; see Figure 18, it has resulted in
tools, such as the graph of Figure 17, which assist in
making the choice hetween continuous and periodic
verification; it has produced design criteria to be
imposed on redundant equipment in order to ensure
that verification will be possible; and, finally, see
Figure 19, it has provided guidance for implementing
the previously identified functions of verification,

132



LT 3anb1y

SN
00¢ 0S¢ 002 (o]=]} 001 (0} \mu
v}
\\1\ \\“
T
"
B el \\\\ og
\
s el \\\\\\
66" =0 —~1
\\\ \\ 00l
e &\\ | )
L~
66" =0 ~ 1 %
)
ya o
\ oGl .
\
\\
06 =0 —1i -

(11) ALITIGYE0Yd TVNDT 10 SINIT SLIS FTdWNIS LNFIVITI FTYHL

*suol

~-enjis buijon Kjiiolew Joy pue s3as
juepuUNpaa JUSWS|8-934Y] pue om)]
Yyioq Jo} padojanap uasq aaey sydesb
yong °ssa300ns uolssiw jo A 1q
~eqoid ay3 st / » -T J979WweIRd BY )

1 ’SuoIjED)jIIOA LDIMIDG w1 B

pue 4g1 N Juswa)a ayy Oy buije)as
ydesb e S| Mojag ‘passaippe uslq
sey pako]dwa Si uoijedijisen sipolsad

uois

Ajuo uaym 9jqeueIqo SSI2INS
Jo 22463p Y3 Jo uonsanb ay ]



The causes of an unverifiable situation are:

a) characteristics of the situation
place it in redundancy class H.

b) inaccessibility of the electrical
points necessary for verification.

c) the signal available for verification
is not sufficient to establish the
desired confidence in the verification.

d) basic incompatibilities between
verification equipment and eguipment
being verified.

UNVERIFIABLE SITUATIONS

Redundant Situation = >Class H
Electrical Points Inaccessible
Signal Available Verification Confidence

Basic Incompatibilities
Figure 18
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SUMMARY

METHODOLOGY FOR VERIFICATION DEVELOPED
UNVERIFIABLE SITUATIONS IDENTIFIED

AIDS FORJUSTIFY!NG CONTINUOUS VERIFICATION
DESIGN CRITERIA DEVELOPED

GUIDANCE FOR IMPLEMENTING VERIFICATION

Figure 19
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SPACE SHUTTLE OPERATIONS ANALYSIS
BY COMPUTER SIMULATIONS

Don G. Satterfield

International Business Machines Corporation

SPACE SHUTTLE OPERATION ANALYSIS

Planning for the Space Shuttle launch operations will be an order of magnitude greater
than that required in all previous launch programs.

Optimization of fleet size, facilities and support equipment must be accomplished if
cost effective goals of the program are to be met and, indeed, if program launch rates
and schedules are to be maintained. Figure 1 [ists alternate concepts that must be
evaluated over the entire program to determine the most efficient and effective mode of
operation.

0

Multiple vehicles will have to be processed in parallel if the high launch rates
are to be achjeved. On previous launch programs; vehicles have been processed
serially.

Reguirements for a variety of space shuttie missions must be handled efficiently.
On the previous {aunch programs long lead time was available for mission
planning. Future space shuttle flight programs must be highly flexible to
respond to a variety of new requirements.

High launch rates using a fixed fieet size will require short turnaround cycles.
A controlled transition must he made from the research and development phase
of the program to the fully operational phase.

The variety of missions to he flown will contain a number of different paylioads.
Timely integration of payloads must be accomplished to avoid constraints to
the high launch rate.

The use of computer simulations provides an effective method to aid in the optimization
of fleet size, facilities and support equipment. It provides a useful too! to test the
impact of new requirements as well as evaiuate the risks associated with decisions,
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SPACE SHUTTLE OPERATION ANALYSIS

® PROCESS\MULTHPLE VEHICLES IN PARALLEL
¢ SHORT TURNAROCUND CYCLE

® VARYING MISSION REQUIREMENTS

e MULTIPLE PAYLOAD INTEGRATION

e COST EFFECTIVE

Figure 1
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SPACE SHUTTLE OPERATIONS MODEL

The model of a system is the heart of any simulation. The model that is being used
for the space shuttle was generated using functional flow diagrams developed during
Space Shuttle Phase B studies. Further development of the functional flow (shown)
has identified requirements for a number of vehicles, a number of facilities and a
number of other support items, Time estimates have to be made to accomplish those
tasks identified as requirements to process a vehicle.
The functional flow shows the logic and decision points for each vehicle from launch
through landing. See Figure 2. A software model has been developed that contains
the same logic. The model reacts to a simulated vehicle in a manner similar to the
real system. When launch rates are introduced into the simulation model, data
obtained will give insight into the system's behavior.
Significant features of the model include:

o Learning curves are implemented for each task.

o Vehicles are setialized for individual investigation,

o Tasks are worked on two or three shifts, five or seven days a week.

o Durations of missions are varied to match launch rate model.

o Operations from first vehicle delivery through total ten-year program are
simulated,

o  Repotts are tailored to specific area of investigation,

o Modification of the model is easy.
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BASIC MODEL

The basic model (see Figure 3) was exercised to evaluate the system's ability to
accomplish the 445 launch mission model. The model was iterated a number of times
to establish the required facilities and fleet size. It must be emphasized that the
resources tabulated by the model are only as accurate as the estimates of time required
to perform individual tasks. Waits for support were encountered in the model flow but
none were of such significance as to affect the launch rates. The maximum fleet size
utilized during the first year was determined to be three Boosters and four Orbiters.

This exercise demonstrated that the facilities and the number of vehicles identified
could support the launch rate. Other data obtained included:

o  Number of flights by each vehicle, by serial number, by year

o Year and day each flight launched

o Serial number of booster flown and identification of a specific orbiter

o Number and average time of waits encountered during each year - reason

o  Average utilization of facility by year.
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LAUNCHES

MISSIONS
{12) 30 DAYS
OTHERS 7 DAYS

BASIC MODEL

wten

Figure 3
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& 445 LAUNCHES

e FACILITIES
LANDING FIELD
SAFING AREA
MAINTENANCE BAY - OHITER
MAINTENANCE BAY - BOOSTER
STORAGE BAY
LAUNCH CONTROL CENTER
MISSION CONTROL CENTER

MOBILE LAUNCHER

LAUNCH PAD

o FLEET SIZE
ORBITER - 5
BOOSTER - 4



EXAMINE THE IMPACT OF RESCUE REQUIREMENTS

The basic model was modified to examine the impact of rescue requirements, see
Figure 4. A test was inserted in each launch process to check if a rescue vehicle
would be available for launch in the required time. If a rescue vehicle was not ready
within the required time, the prime vehicle was held until the rescue vehicle became
available. The test was made just prior to fueling the prime vehicle.

Three conditions were investigated:

Condition 1 - Rescue launch capability required 32 hours after launch of the prime
vehicle.

Condition 2 - Rescue launch capability required 16 hours after launch of the prime
vehicle.

Condition 3 - Rescue launch capability required 16 hours after launch of prime
vehicle. With reduced launch rate, impact of reduced fleet size.
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EXAMINE IMPACT OF RESCUE REQUIREMENTS

e CONDITION 1 — RESCUE LAUNCH CAPABILITY WITHIN 32 HOURS

4 BOOSTERS - 5 ORBITERS

e CONDITION 2 — RESCUE LAUNCH CAPABILITY WITHIN 16 HOURS

4 BOOSTERS - 5 ORBITERS

e CONDITION 3 — RESCUE LAUNCH CAPABILITY WITHIN 16 HOURS —

REDUCED FLEET SIZE

3 BOOSTERS - 4 ORBITERS

Figure 4
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CONDITION 1

The rescue requirement has minimal impact on the number of launches achieved. The
mission model was met in evety year, except for the 9th and 10th years. The notable
impact was in the utilization of the launch pad and the mobile launchers (ML). Waits
were encountered for the mobile launchers but total launches achieved were only reduced
by five.

A total of 440 launches were achieved. See Figure 5.
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LAUNCHES
g

o
I

CONDITION |

MISSIONS

3 -rramneo
- - ACCOMPLISHED

o 440 LAUNCHES
o LAUNCH PAD NO CONSTRAINT

¢ WAIT ENCOUNTERED FOR MOBILE LAUNCHERS

YEAR 7 8 9 10
NUMBER 21 25 23 22
AVERAGE HOURS 22 37 39 36

» MINIMAL IMPACT ON BASIC MODEL

e FLEET SIZE
ORBITER — &
YEAR BOOSTER — 4

Figure 5
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UTILIZATION CHART
Basic and Condition 1

Figure 6 shows the impact of the rescue requirements on the launch pad and the mobile
launchers. The early peak is due to a static firing requirement for initial delivery of
each vehicle. The high utilization of the mobile launcher indicates that it could be the

constraining item in the flow. '
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CONDITION 2

The rescue requirement has serious impact on the number of launches achieved. The
mission model was met only during the first six years of the program. Numerous waits
of long average duration were encountered, These waits resulted in reduced launch
rates.

The model was changed to add one mobile launcher, then the model was re-exercised.
A total of 421 launches were achieved of the planned 445,

The model was changed to reduce launch pad mobile launcher refurbish time by one day

(reduced from five days to four days). The effect was very similar to adding one mobile
fauncher. Launches achieved numbered 422. See Figure 7.
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LAUNCHES

MISSIONS

80
D -~ " PLANNED

- —  ACHIEVED

CONDITION 2

Figure 7
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e 371 LAUNCHES

o LAUNCH PAD MINOR CONSTRAINT

o WAIT ENCOUNTERED FCR MOBILE LAUNCHERS

YEAR 6 7 8 9% 10

NUMBER 4 53 52 52 B2
AVERAGE HOURS 83 180 172 172 184
SIGNIFICANT IMPACT ON BASIC MODEL

442 LAUNCHES CAN BE ACHIEVED BY REDUCING
PAD AND MOBILE LAUNCHER REFURBISH BY ONE
DAY

421 LAUNCHES CAN BE ACHIEVED BY ADDING

ONE MOBILE LAUNCHER WITH NO CHANGES IN
REFURBISH TIME

FLEET SIZE
ORBITER - 5
BOOSTER - 4



CONDITION 3
The basic model was returned to the original configuration and the fleet size was reduced

to three Boosters and four Orbiters.

The model was exercised and 369 launches were achieved.

The conclusion: if the reduced faunch rate achieved in Condition 2 is acceptable,
reduction of fleet size can be accomplished with minor impact.

This example identifies the importance of re-examining a flow after initial constraints
are indicated. See Figure 8.
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LAUNCHES

CONDITION 3

go J “MIsstons
D ~  PLANNED
- —  ACHIEVED
60 ] | « 389 LAUNCHES
{ @ LAUNCH PAD NO CONSTRAINT
@ WAIT ENCOUNTERED FOR MOBILE LAUNCHERS
40 YEAR - 5 $ 2 10
NUMBER 1 1 1 2
AVERAGE HOURS 43 53 a3 21
1 | o IF LOWER LAUNCH RATE ACHIEVED IN CONDITION 2 -
MINIMAL IMPACT ON FURTHER REDUCING FLEET SIZE
e FLEET SIZE
— ORBITER — 4
YEAR BOOSTER — 3
Figure 8
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UTILIZATION CHART
Conditions 2 and 3

Figure 9 indicates the constraints preventing achievement of the planned launches. The
condition 3 plot indicates that other elements in the flow are constraining launches. The
most probable cause is the reduced fleet size for condition 3.
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CONCLUSIONS

Computer simulation is a capability that provides an effective means of testing and
evaluating proposed operations concepts. The system's behavior is modeled by a
computer program which reacts to operating conditions in a manner similar to the
planned operational flow of vehicles. Years of operations can be examined in a short
time using simulation to gain insight, test hypotheses and the feasibility of alternate
concepts, ‘

Computer simulation is not a precise analog of an actual system, therefore, the user
must exercise careful judgment in setting up a model and in interpreting the results.

Generating a computer simulation program is a difficult time-consuming task requiting
extensive programming experience. To be most effective, a simulation model must be
structured for rapid execution and be adaptable to modifications as work proceeds. To
avoid extensive development costs, IBM's General Purpose Simulation System (GPSS)
has been used to model Space Shuttie faunch operations.

It is apparent that detailed data produced by the model will become more meaningfu! as
Space Shuttle program experience is gained. The model can serve as a valuable
operational planning tool because of the availability of refined inputs.

It is not suggested that modeling is the solution to all problems, hut it is a valuable
tool in the study of total program operations. The use of computer simulations will
provide insight into program plans and produce data to aid in the decision making
process. See Figure 10,
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~ CONCLUSIONS

COMPUTER SIMULATION IS A VALUABLE TOOL IN ANALYZING

SPACE SHUTTLE OPERATIONS

CARE MUST BE EXERCISED BY THE USER IN SETTING UP THE

MODEL AND INTERPRETING RESULTS

GENERAL PURPOSE SIMULATION SYSTEM IS ADAPTABLE TO

MODELING THE FLOW OF SPACE SHUTTLE OPERATIONS

THE COMPUTER SIMULATION TECHNIQUE CAN BE APPLIED

TO OPERATIONS PLANNING

TOTAL PROGRAM IMPACT CAN BE ASSESSED AS NEW

REQUIREMENTS ARE IDENTIFIED

Figure 10
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USING THE COMPUTER AS AN AID IN PLANNING
OPERATIONAL ANALYSIS BY SIMULATION

Rau! D. Smith

NASA, Kennedy Space Center, Florida

INTRODUCTION

How can you use a computer as an aid in planning? By providing a means of communi-
cating with it! There are two problems in communicating with a computer, how you
talk to it and how it talks to you. How you talk to it is relatively simple - through an

interpreter - programmer! How it talks to you is really the problem.

What usually comes out of a computer is a compromise. It depends on the interpretations
between the user and the programmer and the programmer and the machine. See Figure 1.

And once-in-a-while a keypunch operator throws in an interpretation or two.

COMPUTER APPLICATIONS AND LOGIC

No wonder the computer talks so much and in such strange manners: strange, that is,
to a manager. Theusual result of this wondrous addition to our brain and fingers is
what I jokingly refer to as COMPLOP, communications plopped on your desk to be
waded through to find the answer. See Figure 2. The analysis of this COMPLOP is

in itself a formidable chore, and, until analyzed, its value is not known.
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To circumvent the problem, the obvious answers are (1) do not aliow interpretations,

(2) let the user make all the decisions, and (3) restrict the machine to calculations and

repetitive operations. See Figure 3.

How do you do this? By a graphic display! For planning, what do you want to know?
The obvious questions are (1) What, (2) When, (3) How long, (4) How much, (5) What
if? See Figure 4. These questions can be related to the simple parameters (1) Nomen-
clature, (2) Time interval, and (3) Dependency. See Figure 5. These three parameters
can be grouped naturally into a flow diageam, see Figure &, and extended into a water-
fail diagram. This is the medium of communications at the Kennedy Space Center. [t
provides a common basis of communications between all contractors and NASA, and
between all levels of operations. The study of the operational support and programmatic
effects of a change to this schedule are often time~consuming, complex, and tedious.
Considerable effort is expended in manipulating these schedules and answering the

questions of (1) How much, and (3) What if?

The logic for this analysis has existed for some time. See Figure 7. Electric circuit
design has allowed analysis for some years in determining the effects of a change in
the circuit. And notice, the same parameters of nomenclature, time interval, and
dependency are present. And also notice the addition of an element in a waterfall is

just a change in dependency. See Figure 8.

Many contractors are approaching the requirements of planning using a computer,
McDonnell Douglas has ACTNET, IBM has GPSS, and Grumman, GE, and many others

have operations models to answer the questions (1) How much and (2) What if?
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What is stated here is an attempt to put all these programs in perspective with regard to
the operations, to show that computer programs need not be tied around data but only the
logic of the operations. See Figure 9. Then the logic programs can be applied at any
level of operations without a new program being required for each level. This is a
significant point, because if the program is not a usable aid for the lowest entity in a
program, it is usually not usable at higher levels. Incidently, taking the data out of

the programming will be a cost saving in programming, as many users will understand.

But, let's put the data in! See Figure 10. Ina tybical operational flow, commodities
are associated with each step in the flow. See Figure 11. A data storage and
retrieval system, linked with the operational flow can provide summary charts of any
commodity we wish to examine under any condition of (1) What if, and (2) How much?
Linear or accumulative plots of any commodity can be analyzed when that commodity is
summed on the basis of the desired operational waterfall sequence. Similarly, the

effects of multipte operations can he analyzed by the same techniques.
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CONCLUDING REMARKS

Without graphic communications, where a picture is worth a thousand wotds, and a

means of relating pictures to real iife, and changing the pictures rapidly and economically
to reflect real life, computers will have little real use in managerial planning and in
actual operations. With this capability, operational and planning personnel will have
one of the most powerful tools they could possess. It allows a fast economical analysis
of present problems, potential problems, and the avoidance of problems which need not

be planned.

Where are we now? We're not there yet! COMPLOP persists! See Figure 12. And
the present methods of programming each specific task is costly. But we're not far
away, and there are a few points to remember (see Figure 13) when computers and man
can really communicate: (1) a computer is no substitute for human reasoning and

(2) a human is no substitute for computer capability of repetitive opérations, but a tool

is no better than the man who uses it.
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'FLIGHT OPERATIONS AND SAFETY

DYNAMICS AND CONTROL FOR ORBITAL RETRIEVAL OPERATIONS
USINC THE SPACE SHUTTLE*

o S5 1
Marshall H. Kaplan**, William H. Yarber' , Edward J. Creehan]1,
and Edward C. Thoms'

Department of Aerospace Engineering
The Peunnsylvania State University
University Park, Penna. 16802

Abstract

Within the next decade manned space stations will be placed in orbits
which already contain large numbers of discarded satellites and other objects.
Retrieval or repair of at least some of this refuse is becoming increasingly
urgent in order to insure success of many orbital missions and reduce satellite
replacement costs. Consideration of technical problems associated with retrieval
operations is of timely concern, particularly in view of the current development
of an economical space trangportation system, the space shuttle. The study dis-
cussed in this paper is concerned primarily with dynamics and control problems
associated with rendezvous and capture of an uncooperative object. A general
discussicn of retrieval problems is offered, and pfoblems peculiar to rescue from
a tumbling space station are briefly outlined. Specific areas considered with
respect to retrieval operations include the problem of despinning an arbitrarily
spinning object of moderate size, automatic orbit control for maintaining a given
parking position relative to an object, transfer trajectories of a despin package,

and techniques for determining spin axis and rate of an uncooperative body.
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Introduction

Over the past 13 years mankind has placed in excess of 4,800 objects into
earth, lunar, and solar crbits.,l At least 2,100 of these are still in orbit,
most of which are circling the earth. There are only a few hundred satellites
among this number, with the remainder consisting of launch vehicle upper stages,
payload fairings, and othexr components related to insertion of satellites.

Although the average number density of these objects is negligible, most are
confined to just a few popular orbits, e.g., synchronous and low, inclined orbits.
Large space stations will be placed in some of these orbits, while the probability
of collision is continuously increasing due to further addition of satellites and
launch vehicle components. Retrieval or repair of at least some of this discarded
matter is becoming an urgent concern with regard to the success of many future
orbital missions.

The high cost of satellite replacement offers another incentive to develop
retrieval and repalr capabilities. Since use of the space shuttle is assumed for
such operations, repairs could be carried out once the satellite is captured and
secured by the shuttle. After renovation it could be returned to useful service.

An alternative to in-orbit repair of a spent satellite is to deliver a replacement
spacecraft and retrieve the damaged one for later repairs and return to orbit.

An additional objective of space retrieval operations might be the return to
earth of satellites particularly important to scientists and curators. Much can
be learned from satellites exposed to the space environment for long periods of
time, Furthermore, there is a great deal of prestige associated with retrieving
some of our early spacecraft.

A considerable amount of work has been done in the areas of space rescue,
satellite inspection, rendezvous techniqueé, and space shuttle technology. However,
several unique problems associated with rendezvous and docking with an uncooperative
object have not been consider elsewhere. Of particular interest is the problem of
despinning an uncooperative object of moderate size and arbitrary shape, which
possesses an unknown spin rate about its major principal axis. A preliminary design

of a remotely operated despin package is presented. Its configuration, dynamics,
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and control systems are discussed in detail. Other problem areas considered
in this paper include object detection and identification techniques, spin rate
and axis orientation determination methods, automatic stand-off control for
maintaining a given position relative to an object, and transfer maneuvers
between shuttle and object. In addition, a general discussion of retrieval

operations is presented.

Operational Aspects of Retrieval

This study is concerned primarily with the retrieval of ummanned, uncoop-
erative objects of moderate size, e.g.,‘weather and other scientific data
collecting satellites whose operation has terminated due to any of several causes.
Table 1 lists several possible candidates for retrieval, These satellites, and
other objects, do not incorporate docking provisions, and, in fact, are likely to
be spinning due to propellant leakage, valve or gyro failure, or initial dynamic
state. It is assumed, however, that objects to be retrieved are spinning in a
stable mode about their respective major principal axes of inertia. This is the
state attained after a period of time in which kinetic energy is being dissipated
by liquid sloshing, elastic deformation of structural members, or nutation dampers.
For objects of the size considered here, the time required to reach a stable state
is, at most, cof the order of weeks, after significant attitude disturbances have
stopped. However, large objects such as space stations which are tumbling, may
require several months to passively dissipate enough energy in order to reach
a stable spin state about the major principal axis. Techniques presented here
would not be directly applicable to rescue from such a space staticn, primarily
because tumbling motion does not have an inertially oriented spin axis associated
with it, which is assumed in the work reported here.

Since the mest economical means of reaching an object in a low orbit for
retrieval, repair, or elimination will be by using the space shuttle, many aspects
of the operational sequence assume a man will be controlling the events and
maneuvers. Automatic control systems are assumed whenever practical, but the
nature of such missions requires the ability of a man to make decisions and perform
functions which are prohibitive in an automated mode, because of the inherent

uncertainties involved., Missions to high altitude orbits would require very
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similar maneuvers., However, shuttle performance is expected to limit it to low
altitude orbital missions. Nevertheless, the state of knowledge is assumed to
be compatible with retrieval missions in the time pericd of interest.

The initial task in a retrieval sequence is considered to be locating and
identifying the object upon arrival in its predetermined vicinity. The size
and shape of the search area will greatly influence the method of search and
identification, and time to search. Furthermore, a successful rendezvous requires
great accuracy in orbit determination. A non-ccoperative radar rendezvous system
for the space station program, which may also be of value to object retrieval
and rescue missions, has been proposed by industry, e.g., Westinghouse.2 It is
understood that the accuracy of orbit determination by ground tracking will permit
the shuttle to be guided very close to the target object. 1In fact, the search
region within which the target is predicted to be located is a cone with a four
mile diameter, five miles long (10}, up to a possible 12 mile diameter, 15 miles
long (30), with the shuttle at the apex.3 The system offered, by Westinghouse
for example, has a range of at least 30nm with range accuracy of about 1 percent
and angular accuracy of 2 milliradians (30)., Once in the search cone the system
can automatically scan the region and detect an object in about a minute.

One possible method of identification upon initial acquisition of an object
employs a television camera guided by the radar tracking system. A zoom lens
can be used to receive an image with limited resolution. If the object is spinning
a "frozen" scene television display can be produced. This is equivalent to using a
mechanical strobe, except the picture is "flashed" on a storage tube. The image
can be held up to about 2 minutes or reinforced at the spin rate of the object.
However, the degree of resolution is somewhat uncertain with such a system, To
determine the dynamic state and physical condition of a spinning body with assured
accuracy and image quality, an optical or electronic strobe is very effective once
the shuttle is within a few hundred feet of the target.

After locating and identifying the object, orbital maneuvers are executed to
approach and acquire a stand-off position relative to the target. If the object
is not spinning or has some minimal spin rate and is of acceptable size, a direct

docking may be attempted. Otherwise, the shuttle must maintain a stand-off or
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parking position while the despin package is deployed to eliminate angular
momentum. Objects which are too large for retrieval are not considered here.
However, there are relatively few such items, because their orbits tend to
decay rapidly due to pronounced drag effects.

Rendezous maneuvers, which are considered to be standard,4 are anticipated
during approach of the shuttle to the stand-off position. Upon arriving at this
position an autopildt will be enlisted to maintain the spatial relationship with
the target while the attitude control system maintains proper orientation.
Assuming a despin maneuver is required, the despin package must make an orbital
transfer from the shuttle to a positicn close te the object. The optimum
position is one in which the axis of the package is in line with that of the
object spin axis. Fine adjustments are to be made after one of the shuttle crew-
men checks alignment via remote television cameras on the package.

Actual attachment to and despin of the object is carried out by a ring which
is aligned with the object spin axis. This ring is spun up to the same angular
speed as the target, while the main body of the despin package remains 3-axis
oriented in an inertial frame. After the ring is synchronized through the use of
a television camera, it is translated along its axis with the main body until
a position near the center of mass of the object is reached. At that point attach-
ment arms are extended from the ring toward its center. Once the target is
secured by these arms, despin is executed with momentum being dumped via attitude
jets on the main body of the package. A docking device on this inertially
oriented body allows the shuttle to rendezvous and recapture the package with
object in hand, and stow it in the cargo bay for return or repair.

In many cases it is desirable to eliminate a piece of space junk without
carrying it in the shuttle. To accomplish this a remotely fired retro-pack could
be attached to an object after despinning. Of course, this device would reentry

with the object and would not be reusable.
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Despin Package Transfer Trajectories

Although the actual transfer of the despin package from shuttle to object
may require several impulses and corrections, an ideal transfer might be one
in which only two impulses are applied, one upon leaving the shuttle position
and one to eliminate relative closing velocity at the object. Thrust computa-
tions are performed in a moving coordinate frame with origin at the target, as
illustrated in Figure 1. The x-axis is positive along the direction of motion,
v—axis is normal to the orbital plane; and z-axis is along the local vertical,
in accordance with Project Apollo Standards.5 Equations of motion for a transfer
trajectory to an object in a nearly circular orbit are well—known.6 In the moving

X, ¥, z frame, for thrust-free transfer, these equations are

11
(o]

X + 2nz

il
o

. 2
y+ny (1

Z - Znx - 3n22 =0

3)1/2

where n = (GM E/a , the mean motion of the target in its orbit. For orbits

of interest here,
-3
n v 10 rad/sec.

The solution of set (1) is readily obtained in closed form:

ij) - (3%, + 6nz,)t

]

(4§° + 62z,) sin nt + (x, -

93
x{t) §° cos nt +

yv(t) = v, cos nt + %& sin nt
Zo . 2%, 2%,
z(t) = P sin nt - (—;— + 3z,) cos nt + (—;_. + 4z,)

0f course, the out-of-plane y— component results in simple harmonic motion. Since
the shuttle is assumed to be in the object orbit plane, this component of motion

is initially zero, and remains so for the transfer, The despin package will
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generally have to perform a terminal maneuver taking it out of the original
orbit plane for alignment with the object spin axis.

In-plane transfer motion is coupled between x- and z-components. Although
this is stated as an initial value problem, the only acceptable values of
initial conditions x,, Z,, Xo, and 2z, are those which result in x and z simultan-
eously approaching zero at some reasonable time after leaving the shuttle. Values
of x and z at that time represent the closing velocity between deSpiﬁ package
and object, and a thrust maneuver is required to avoid collision and establish
a parking position along the spin axis of the target and very close to it.

Since solution set (2) is linear in initial velocity components, the required
values of these components can easily be well approximated as functions of x,, z,,
and t by setting x = z = 0 and solving for %, and %,. As a further simplication,
the shuttle is assumed to be positioned on the x-axis. Then z, = 0, and initial

velocity components are given as

. -n¥, sin nt
8(1 - cos nt) - 3nt sin nt

. 2nx, (1 - cos nt)
Yo 8(1 - cos nt) - 3nt sin nt

These resulting expressions indicate that iInitial relative velocity requirements
for the despin package transfer are functions of x, and time of transfer, t. For
example, if the object is in a circular 200 km orbit with the shuttle positioned
100 ft. ahead of it, in order to transfer the package in 15 minutes the initial

velocity components must be

Xo ~0.068 fps

BN
°
[

> 0.100 fps

The transfer trajectory for this case is plotted in Figure 2. The shape of this
path is typical of such transfers. Closing velocity components are obtained by
differentiating the position expressions, set (2) and evaluating % and Zz at the

value of t corresponding to the transfer.
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The final approach .angle @ should correspond to the projection of the
object spin axis onto the orbit plane. Then a final out-of-plane maneuver by
the despin package will permit final alignment. For given shuttle stand-off
position, this angle is only a function of transfer time. The computer required
to make transfer calculations and generate commands can be housed in the shuttle

and a data link used to control the despin package maneuvers.

Shuttle Stand-0ff Autopilot

As previously discussed, the shuttle will be required to maintain a fixed
relative position with respect to the target during despin operations. It is
assumed that an automatic system will be used to control a position in the
target orbit plane at an (x,z) location, as shown in Figure 1. <Continuous
range, range rate, and angle data may be provided by the tracking radar system.
This information in combination with an inertial navigation system can be trans-
formed to the x, y, z, %X, v, z format and used by the autopilof to generate
commands for the orbit control system.

Automatic position control can be modelled by using the non-homogeneous

form of equations (l),6

X+ 2nz = f
X

. 2

¥ +ny=¢£ (3)
y

z - 2nx - 3nzz = fz

where fX, fy, fz are the applied acceleration components, including both dis-
turbance and control forces. As an example of control system synthesis, consider
the simplified situation in which z, is zero, as illustrated in Figure 1.

This assumption leads to homogenecus initial conditions, and a valid transfer

functicon, by defining a new coordinate,

Initial conditions associated with set (3) become
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0, z(0)

I

Zo = 0

]

A0)

H
p
o

]

0, y(0) = vy,

0, z(0)

zo = 0

i
]

A (0)

Ao = 0, ¥(0) = ¥,

taking the Laplace transform of the differential equations and solving for

As), Y(s), Z(s) gives

s2 - 3n2 2n

A(s) = F (s)— F_(s)

82(32 + n7) * S(S2 + n2) z
¥(s) = —5— F_(s) (4)

s +n y

1 2n

z2{(g) = ————— F (s8) + T (s)

s2 + n2 z s(s2 + n2) X

The control law assumed for this application implies the use of continuously
variable thrusters. Since feedback is available from the tracking system on

position and velocity, the contrel forces may be of the form

f = - K (AM-K, N
cX X 1

fCY = - Ky (Y - K2 Y)
fcz = - hz (z - K3 z)

where A, y, z and A, ¥, 2z are position and velocity errors, respectively.
Negative signs in the brackets assure negative feedback. O0Of course, the refer-
ence values, Ac’ Voo Zas Xc’ ﬁc, éc are all nominally zero for this control
situation.

Fipures 3 and 4 illustrate the block diagrams for the three components.
Note that A- and z- components are coupled, as is evident from equations (3).

To determine the system transfer functions, each input is taken separately. The

v—- component is uncoupled and has inner lcop transfer functions
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dy s + Kys + n2

and outer lcop transfer functions

Y - Ky KZ
>
Yc s“ 4+ Ks+ (K K.+ n2)
y y 2
Y 1
F 2 2
dy s +Ks+ (K K, +n
y v ( v X2 )

where de represents the y- component of disturbance force.

The two coupled components represent a more difficult situation. Since the
gain of the coupling term is of the order of the mean motion n, it is easily
seen that the ccupling has relatively little effect on the component systems,
because the value of n is so low. Therefore, the coupling term will be neglected
for the moment. An analog simulation was used to verify the validity of this
assumption.

The A~ component function in relations (4) is alsc complicated by the two
zeros in the numerator of the system equation. Again considering the magnitude
of the mean motion, an approximation can be made by canceling the 52 - 3n2 term
with 52 in the denominator. These simplications result in a system consisting
of three identical and independent components. Therefore, an analysis of one
component is also valid for the other two.

Steady state errors of the system are found by applying the final value
theorem. Fpr a step input of unity, the steady state errors in the command
signal are unity, and the steady state errors in x,y,Z disturbances are qzéafﬂ,

1%
), Tespectively. Thus, as amplifier gains are increased these

2y 3 7z
disturbance errors decrease.
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The root locus method was used to establish stability criteria and deter-
mine required compensations. Coupling effects were neglected for the stability
analysis. Since coupling is so small, stability should not be effected., For
the y- component, the imnnerloop pole-zero plot consists of two poles symmettri-
cally located on the imaginary axis, As the gain is increased with negative
feedback the locus loops down to the left half of the real axis. Since the
pole locations correspond to the dimension of the mean motion, low frequency
and high damping result even at low gains. A high gain will improve the
response in the total system (outer) loop, giving two pcles on the real axis,
one at zero and the other at the value of Ky in the left-~half plane. With
negative feedback in the outerloop this locus will have two vertical asymptotes
breaking away from the real axis at the point corresponding to half the value
of Ky, Therefore, by varying both Ky and Kz, the root locus can be positioned
as desired in the left~half plane. Selection of exact values will depend on
required response characteristics.

Since approximations involving the mean motion and coupling effects between
x~ and z- components resulted in identical transfer functions for all three
components, the stability analysis for each is identical to that of the y~ component.
Validity of ignoring this coupling on stability can be demonstrated qualitatively.
The original transfer function, including coupling and mean motion terms, indicates
four poles and two zeros in the vicinity of the origin. One zero is in the right-
half plane; implying probable instability of the system. The difficulty in
compensating this zero may be excessive. However, the associated frequency of
instability is of the order of the mean motion, i.e., one cycle per orbit. The
total system frequency should be several orders of magnitude greater than this,
indicating that the system will respond long before an instability can reach a
significant value.

The contreol system can now be designed to meet the required response criteria.
Bv proper selection of gains the desired combination of damping ratio, overshoot,
and natural frequency can be achieved., Since each component is represented by
a second order system, natural frequency and damping ratio are obtainable directly

. - , . 7
from the location of the poles on the corresponding root locus diagram.
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An analog simulation of system response was made in order to check validity
of approximations made in the analysis and obtain response curves for all three
components, The analog program was developed by substituting values for gain
constants inte the differential equations. These values were chosen such that
the damping ratio would be about 0.8 and the natural frequency about 30 rad/sec.
This led to an innerloop gain of 51.2 and outerloop gain of 20.0. Single y-
component system response in both position and velocity was found for unit step
and impulsive inputs, as shown in Figure 5. Inputs are either command signals
or disturbance forces. Significance of the mean motion magnitude on respomnse
was, in fact, found to be negligible for these operating conditions. Thus,
responses of the y-component system represent all three systems.

From these considerations it seems possible to use three simple control
systems to maintain the relative position of an orbiting vehicle with respect
to another object. Since each system is a simple second order type, it has

excellent stability characteristics.

Spin Axis and Rate Determination

As mentioned previously, it will be necessary to determine the spin axils
orientation and angular rate of a passive object before capture by the space
shuttle. There are several techniques which might be useful for spin determina-
tion., Two are considered here, one method which has already been briefly dis-
cussed employs a television "frozen" scene display. The other method makes use
of a mechanical strobe developed by E. T. Pearson of the Frankford Arsenalg.
This device utilizes two counter rotating prisms to produce a fixed image when
the prism speed is synchronized with the object spin rate. The method is shown
schematically in Figure 6. A calibrated drive motor contrcl can be used to
determine the actual spin rate. The entire unit may be mounted on a rotatable
platform for limited angular adjustments at its assigned viewing port in the
shuttle. Application of this device would be limited to providing spin axis
and rate information to be used for generation of commands to the despin package
for its initial alignment maneuvers upon reaching the target. Although feasibility
is still in questicn, the mechanical strobe offers excellent image resolution

continucusly and is being studied further.
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Viewing Lens

Figure 6. Schematic of Optical Strobed
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Final alignment with the object spin axis may be accomplished through the
use of two television cameras which provide a bifocal view of the target. The
cameras will he focused at a given distance from the target which will permit
alignment and stand-off parking simultaneously. When the angle between the
spln axis and the center line of the despin package is zero, the axes will be
aligned. At this point the television display may be operated in the stop-
action mode and cycled at the estimated rate of target spin. Slight de-
synchronization will cause an apparéent rotation of the target about its actual
spin axis with frequency equal to the difference between object spin rate and
camera display cycle rate. This information is used to make fine adjustments
for final alignment by adjusting the display cycle rate to compensate for the

frequency difference. The despin sequence may then proceed.

Despin Package

The problem of despinning an uncooperative object has been cited as one of
primarvy interest in this study. The decision to propose a separate device for
this operation is the result of safety and performance considerations with respect
to the shutrle. With a despin package maneuvering about the object at a "safe"
distance away from a manned vehicle, the risk of bodily harm from a mishap is
minimized. Crewmen on the shuttle can maneuver a small spacecraft with great
ease, especially when aligning the package with the target spin axis.

The despin package is conceived to consist of two major components; tender
and despin ring. The tender provides all functions required for orbital transfer
and alignment with the target, while the despin ring performs the actual capture
of the object. A configuration based on constraints and mission objectives was
formulated. The complete spacecraft 1s illustrated in Figure 7, with tender and
despin ring shown in greater detail in Figures 8§ and 9, respectively. Overall
size of the despin package is limited by the shuttle cargo bay dimensions, proposed
to be 15 feet in diameter and 60 feet longg. This restricts the ring size and,
in turn, limits the size of objects which can be considered for retrieval. How-
ever, most cbjects of interest satisfy this size restriction. The tender is
configured to allow maximum applied torque from the reaction control system while
permitting large values of inertias about the ving axis. These innovations will

minimize propellant requirements and effects of disturbances associated with the
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despin sequence. Thus, the major dimensions of this main body were selected as
14 X 14 X 8 feet. Compartments in the four arms contain the power system,
nitrogen gas reactioun control equipment, and command and telemetry system. The
central cylinder houses the ring spin motor, twin-gyro controllers for the
attitude control system, a reserve nitrogen tank, and docking drogue. The
despin ring as conceived here has an inner diameter of 13 feet and an outer
diameter of 14 feet. The four docking arms extend Iinward another foot when in
the retracted position., These arms are independently operated to permit
capture of arbitrarily shaped objects and can each extend to ¢ feet in length.
Therefore, objects as small as one foot and as large as 1l feet in diameter can
be handled by the same despin ring. Structural support of this ring is provided
by four struts as illustrated in Figures 7 and 8.

The subsystems which make up the despin package may be categorized as
control, command and telemetry, docking devices, power, and structure. Attltude
and orbit control systems, in conjunction with remcote commands from the shuttle,
provide maintenance of position and orientation during transfer and docking.
Twin-gvro controllers were chosen for momentum exchange and nitrogen reaction
jets for momentum dumping. Since the tender is inertially oriented in the
attitude maintenance wode there is no first order cross—-coupling. Cold gas jets
have inherently poor performance, but nitrogen gas is relatively safe and easy
to handle. TFurthermere, the reaction jet tanks are easily refillable before
"each retrieval sequence. The orbital control system provides thrust impulses
for transfer to the target and aligns the package with the target spin axis under
commands from the shuttle. Relative position maintenance is performed by remote
commands from the crew. Once the package is aligned, capture should be
accemplished in a short period of time. Therefore, relative position drife is
very slight during this time interval, and an automated position control system
is not required.

The command and telemetry system incorporates television cameras and two
antennas, an omnidirectional type for the command and telemetry link, and a'
high gain directional dish for television transmission. The high gain dish
imposes some constraint on the shuttle stand-off position in order to satisfy

the viewing requirements for this antemna. One camera is mounted along the ring
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axis at the center of the support struts, and spins with the ring. This offers
a very convenient means of synchronizing ring and target spin rates and provides
a check on alignment. Two other cameras mounted diametrically opposed on the
central cylinder are used for relative position maintenance through their bifocal
properties.

The shuttle/package docking apparatus, shown in Figure 10, consists of a
folding arm mechanism with probe, docking latches, and tender drogue. The
folding arm extends a docking probe tc a position which is easily observable
by the pilot. The shuttle then maneuvers to the despin package and upon completion

of docking, the package is deactivated and retracted into the cargo bay.

Rescue and Retrieval

The subject of orbital retrieval naturally gives rise to the guestion of
rescue from a space station. Several rescue schemes have been proposed for
various emergency situations. The one of interest here utilizes an earth-launched,
manned rescue system, i.e., space shuttle specially equipped for such a mission.
A typical maneuvering sequence for rescue might be similar to that of a retrieval
mission except for despinning and docking. It must be pointed out, however, that
an uncontrolled space station which has suffered a significant attitude perturba-
tion will in general be tumbling. There is a distinct and unfortunate difference
between tumbling and spinning. The latter is associated with stabilized rotation
about a single axis whose direction is inertially fixed and aligned with the
angular momentum vector. Tumbling motion is associated with a major misalignment
betweén angular velocity and angular momentum vectors, This situation is coupled
with continuous angular motion of all three principal body axes, i.e., no inertially
oriented axis. Of course, a tumbling body would reach a stable spin state after
a sufficient amount of energy has been dissipated. However, large bodies such as
space stations have relatively low dissipation rates and may require several months
to passively stabilize.

Astronauts trapped in a tumbling spacecraft could not easily escape and may
not even be able to move about inside due to the changing nature of accelerations. i
Therefore, rescue from such a situation represents a very different problem and |
ene which is likely to arise, because failure of such a station might very well

be the result of an explosion or collision. Either event would probably cause
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tumbling and possible loss of attitude control. It is apparent that spacecrafc
attitude motion would have to be arrested before rescue operations could be
carried out. However, elimination of angular motion of a large tumbling body
is a very difficult task, because it must be done from a non-tumbling frame.
A "detumbling package" could not move in such a way as to eliminate relative
motion, because both the target and detumbling systems cannot simultaneously
possess the same center of mass location, principal moments of inertia, and
angular momentum components. '

The space shuttle offers a fast, economical rescue capability., llowever,
a great deal of innovation is still needed to develop methods for elimination
of angular motion of a large body. This appears to be a very difficult task,

but cne which must be done to fulfill a complete space rescue capability.
Conclusions

Several of the unique problems of rendezvous and docking with an uncoopera-
tive object have been considered here. Major areas of concern include the
determination of spin axis and rate of an arbitrarily shaped body, and the
problem of despinning such an object. Many assumptions about the mission and
constraints had to be formulared due to the lack of experience with orbital
retrieval and space shuttle operations. The large number of uncertainties
associated with retrieving an uncooperative hody indicates a definite need for
control of the situation by a man. The economic aspects of these missions
indicate the use of a reusable transportation system. Therefore, a strong case
can be made for space shuttle application te retrieval operatioms.

The principal contributions of this paper are considered to be the formula-
tion of a general operational sequence for retrieval using the space shuttle,
development of spin determination methods, and conceptﬁal design of an unmanned
spacecraft which can despin an uncooperative body. In addition, the technique
of stand-off parking and intermediate transfer between shuttle and target offers
safety and increased maneuverability with respect to despinning an object.
Partial applicatrion of the methods used in retrieval may be made to the problem
of rescue from a space station. The major area of difference is related to

possible attitude dynamics of a large manned spacecraft.
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Future studies should yield some optimization of stand-off parking positions

and transfer trajectories. Further development of the despin package design

will produce estimates of physical properties and control system responses for

the various attitude and orbit maneuvers required of the mission. Investiga-

tions of spin determination methods will eventually lead to a '"quick" technique
P q

for calculating spin rate and orientation,
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INTRODUCT ION

The control of future spacecraft has reached the threshold ¢f auboncmous
operationg. The development of large manned spacecraft for extended earth
orbital flights and interplanetary cxploration demands that the capability
for more control and mission decisions be on~board., The cost of providing
srouwnd control for continuous mission monitoring and evaluation fer all
future manned space flights will become prohibitive. It will be impractical
to dedicate the computer and manpower for the extensive smount of time
reguired by planned future manned flights. With space travel becoming more
routine, the feasibility of controlling each vehicle from the ground bhecomes
impractical, The physical size and payload capability of future spacceraft
will increase the number of vitsel functions to be monitored and controlled.

Tmmediate action in emergencieg will require computer diasgnosis to assist

the crew in determining the proper response. Each of the varicus spacecraft
will be conducting mission peculiar experiments, These experiments will
regquire on-board data reduction and analysis, snd the mission timelipne will
depend upon the conclusions drawn from the data. Therefore, this information
must be immediately available for on-board modifications.

Because of the nature of any manned spacecraft, the reaction and declsion

time arc critically short and necessitate that a computational subsystem be

an integral part of the spaceship systems., This computer must not only be
programmed to automatically control and monitor the spaceship's functions, but
must also possess the atfributes of speed, accuracy and ease of communication.
The computer must be integrated into the information system such that decision
data are effectively displayed in a form which can be analyzed instantaneously.
Convergely, crew action in responding to alarm situations must be timely and
with minimum translation. Therefore, the informaticn system must accept data
in a gyntax which conforms to the crew's vocdbulary rather than that of the
computer. Without these inherent features it would be difficult for the
spacecraft commander to exerclse ultimate authority and responsibility.

The primary objective of this document is to describhe the crew/compuﬁer
interaction (communications) functions and methods required for future
space travel, This report summarizes the current results of the AstTonaut/
Computer Communications Study now in progress at M3IFC. The sterting point
in this task is teo draw upon the experience which has been gained in the
space programs by evaluating existing and proposed methods of crew/computer
Interaction. This will result in the characterization of specific criteria
o Torm a study baseline establishing trends from which the degree of
mruter automation will be extrapolated. The function of each subsystem
20 spaccceraft will be analyzed to determine the degree of manned and
autematic contrel and their interrelaticonships.

The uliimate method suggested for future on-board crew/computer communications
is voice commmications with self-educating computer systems, The methods
described in thie document are not that exotic but are considered as inter-
mediate solutions to the on-board crew/computer communications. The term
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"intermediate" iz intended to connote a necessary evolutionary step in
achieving the ultimate solution, not to infer that better solutions exist.
The methods described in this paper are technically feasible and considered
advanced when compared with conventilonal systems. They reflect proposed
hardware and software technology advances anticipated for the period 1973 to
1980. Although the crew/computer interactive methods described herein do not
eliminate the needs for knobs and switches as a part of fubture spacecraft
cockpit configurations, they do provide a technique for considerably reducing
the present day requirements. Briefly, the crew/computer communication
methods presented utilize remote graphic displays for entering data and a
technology oriented vocabulary for describing tasks to the computer.

In deriving these techniques, analyses of on~board crew/computer interactive
functions and methods were conducted. The functions identified as a result
of these analyses are documented in Section 1 of this report, and the methods
are discussed in Section 2.
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SECTION 1

FUNCTION CATEGORIES

In determining on-poard crew functions for future spacecraft, an assumption
was made that future spacecraft would be as autonomous as state-of-the-art
technelogy would permit. Ground support functions performed for Gemini and
Apollo missions were congidered as on-board function requirements for future
spacecratt. To complle a composite list of gpacecraft functions an in-depth
analysis wag conducted into the following areas:

A, Ground support functions required by existing and past spacecraft
and space missions,

B. On=-board functions required by existing and past spacecraft.
C. Proposed functions for Space Shuttle.

A careful investigation of current methods of documenting or listing on-board
functions of both aireraft and spacecraft disclosed that several technigues
were used. The more conventional methods were organized by mission timeline,
mission phase or vehicle hardware subsystems, These techniques were generally
voluminous in nature and redundant in content:; therefore, the organization of
these functions 1s considered unsatisfactory.

The purpose of the study is to define a structured vocabulary and egtablish
methods by which space scientists or agtronauts can communicate with the on-
board computer. In identifying the on-board function by technology or
disciplines, a structure is established and a direct function, method and
vocabulary relationship defined. It is for this purpose that the technique
of grouping related functions intc categories was adopted.

The eight function categories lisgted below have been egtablished as a result
of the analyses conducted in this study.

Mission Control -- Tunections reguired to monltor and cvaluate actual versus
plenned mission data, and to adjust mission plan or correct vehicle performance
&3 required to achieve desired migsion goals.

Date Management -- Functions required to acquire, process, store, maintain
and reftrieve data as required to support the vehicle and related mission
functions.

Communications -- Functions reguired to select the desired communications
media (i.e., radio, television, radar, etc.) and related frequency/channel,
antenna, and rcute of commnications.

206



Flight Control -- Functiong reguired to mainteln vehicle attitude and
trajectory as required by the flight plan.

Guldance and Navigation -~ Functions reguired to acguire and reduce G&N data
so that the vehicle's current versus planned position and trajectory can be
determined and the degree of deviation and compensating control functicns can
be computed.

Experiments -=- Functions required to perform, monitor, and contrcl experiments
being yperformed from space vehicle,

Maneuver Management -- Functilons required to 1n1tlate, execute, and evaluate
stecess of a vehicle maneuver.

Operational Status -- Functions required to monitor and maintain vehicle and
crew operational status.

The results of this task support the philosophy that each function category
will have its own interaective hardware and language regulrements. This is

not unreasonable to cxpect when considering that individual ground disciplines
have upique computer/communication requirements and that future space languages
will, by necessity, have to be ecasy to learn and easy %o use. Fulure space
migsions will find the on-bhoard computer user performing his job functions
utilizing language and tools normally associated with his Job function and/

or discipline. It is also not unreasonable to conceive that all calegories
requirements can be met with one general purpose graphic display terminal.

Representative function categories determined during evaluation of vehicle
subsystems will be described in detaill, The intent is to define the functions
comprising three functlon categories of the eight previously defined and to
emphasize the requirement(s) for these functions. The format for this
discussion will present a pictorial overview of the function category being
described with accompanying prose citing exeamples for clarity. Many of the
functions described herein are proposed or anticipated to be operational on
manned spacecraft such as the Space Shuttle during time frame 1973 to 1980.
For this reason &ll functions are discussed collectively as if they were
operational today.
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MISSICN CONTROL (Figure 1)

Mission control encompasses all functions and subfunctions that must be
performed to assure crew safety and mission success. Basic functions
associated with this category are: (1) mission planning, (2) mission
performance monitoring, and (3) commending. Currently, the performance

of these functions is 4 ground suppert responsibility, but to achieve

the degree of vehicle autonomy being proposed for Space Shuttle and to
accomplish future menned space missions (Space Bese), mission control
functions will be required to be performed on-board, This 1ls substantiated
by the economics and logistics involved in maintaining a dedicated ground
support mission control center.

Miggion Planning

Mission planning functions are primarily concorned with the generation and
maintenance of the misgion timeline, a chronological list of mission events
to be performed. The mission timeline also contains the following data
related to event performance requirements:

A. Event support requirements (i.e., subsystems, resources, etc.).

B, The estimsated status of the vehicle and subsystem before and
after an event is performed.

C. Resources and expendables required by the event.
D. Crew participation requirements.

I. TFEphemeris data associated with the vehicle prior to event
execution,

F. Other necessary data required for judgment decision involving
event execution.

The mission timeline ig also used as a "yardstick" for measuring mission
performance (i.e., actual requirements versus planned).

Timeline Event Analysis -- Before scheduling a timeline event the event
requirements must be identified to establish the capability of the
vehicle to perform the event, Once this is established, an analysis

is conducted of other events already scheduled to identify conflicts
which could effect event scheduling and performance (i.e., computing
for resources, counteracting events, ete.).

Timeline Event Z2cheduling -- Once the vehicle ig found cgpable of
performing the event, and the timeline can accommodate the event, the
event 1s scheduled. Event scheduling is a tedicus task for any event
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change. A critical analysis must be made of the timeline to determine
exact times available for event execution and should the event being
scheduled reguire a specific time, scheduling conflicts (i.e., resource
and subsystem availaebility) must be resolved via predefined shifting or
rescheduling algorithms.

Mission Performance Monitoring

The vehicle "commander' must continuously monitor mission performance, vehicle
subsystem status and rescurce utilization rates. In this manner he ig able

to make decisions concerning the mission. For past manned space programs
(Gemini and Apollo) this activity was performed on the ground with the
assistance of a large mission control staff, For future manned space

programs this function will be performed on-board with the assistance of

the on-board computer and computer software,

Mission Performance -- The performance of the mission 1s determined by
comparing actual data generafted by the misgion in progress with planned
data generated prior to the mission and predicting mission success based
on timeline event requirements and new data rates, These functions are
performed automatically by the on-board computer by comparing the mission
timeline with data obtained directly from vehicle subsystems. In this
manner vehicle, crew and schedule performance are determined statistically
and displayed for information and acticn by the flight commander.

Vehilcle Subsystem Status -- Monitoring vehicle subsystem status 1is
another functicn automatically performed by the computer for the
"£light commander".

Resource Utilization Rates ~-- The Tlight commander will monitor the
vtilization rates of vehicle hardware and consumables for statistics
generated by the computer. The raw data used in compubting these
statistics is cobtained directly from hardware sensors, Interpretation
of the computed statistics provides visibility of resource utilization
performance.

Mission Commanding

Commanding functions are those declsions made by the "flight commander” in
determining the future of the mission being performed. The commander makes
the final decision whether or not to continue or alter the planned mission
and impiements his decision by issuing commands to effected areas, Commands
can be verbal orders to crew members, but in many instances commands will be
computer coriented functions which are initiated by the commander from the
control and display panel on the misgion control congole,

Continue Planned Mission -- Decisions made to continue the planned
mission will be of the morce routine type commanding functions that
allocate resources, assign tasks and enable compuber programs required
to maintain the planned migsion.
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Alter Planned Mission -- If the "flight commander" decides a mission
change 1s required, he must determine: (1) if a modification to the
planned mission is adequate; (2) if an alternate mission is possible;
or (3) if an abort situation exigts? The ultimate decision will be
made by the commander considering the mission change requirements and
the capability of the vehicle and crew to perform,
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MANFUVER MANAGEMENT (Figure 2)

Maneuver management is a unique category of functions established to
coordinate the various interfacing functions required to identify, define,
and execute a vehicle maneuver. In many instances a maneuver requirement
will be identified by mission control, in others by flight control. G&IV
determines the control requirements of the maneuver and flight control
performs the maneuver. The responsibility of maneuver management functions
is to coordinate function interfaces preparing for the maneuver, executing
the maneuver, and evaluaiing success of the maneuver. The functions
described here are distinguished from those discussed under flight control
in the flight control is concerned with maintaining a predefined flight
path. Maneuver management on the other hand is concerned with rendezvous,
docking, station keeping, and other maneuvers which cease to be trajectory
oriented.

Preparat ion

Vehicle maneuvers are scheduled on the mission timeline at sufficient time
intervals to allow for the extensive preparation requirements. A checklist

of functions must be performed and systems must be initialized in anticipation
of the maneuver requirements.

Checklist -~ Checklist functions are performed to verify condition
requirements of the maneuver being planned., The checklist is an
accepted technique for reminding crewmen of the tasks which must be
performed in verifying the vehicle's operational status and readiness
to perform the maneuver. Checklist functions for manned space vehicles
are expanded to include an snalysis of the events required 4o perform
the maneuver. This analysis establishes the timing and interactive
function reguirements for performing the maneuver. The purpose of
checklist functions 1s to minimize, if not eliminate, operating
problems once maneuver executicn is started.

System Initialization -- Prior to performing a maneuver, vehicle on-
voard systems must be initiglized. This requires that the initial
conditions for respective subsystems be set to accommodate maneuver
requirements. Scme of the subsystems wiil have components which must
be enabled before the components respond. (An example of a component
enable reguirement would be hardware settings required for gbort
situations. This enabling technique requires double consideration
be given the task being performed.) Software as well as hardware
conditions must be initialized. G&N ephemeris parameters must be
updated to reflect current status of the vehicle so that any
accumulated G&N data errors are corrected prior to the maneuver,
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Executlon

Maneuver executlon functions actually schedule the maneuver, initiate the
sequence of events which perform the maneuver, and monitor the maneuver's
progress to completion.

Schedule Maneuver -- Maneuver scheduling functicns allocate the actual
time and time duration for the mancuver, ensuring subsystem and resource
availability recuirements.

Initiate Sequence of Fvents -~ Initiating the sequence of events is
described as that function(s) which is required to issue the control
command (s) that will execute the events which perform the maneuver,

Monitor Maneuver Progress -- Fubure manned mancuver progress functions
will be restricted, almost entirely, to computer interpreted and
displayed data. Decisions will be based on performance evaluation
and data being displayed by the on-bhoard computer system.

Evaluation

Maneuver management requires both pre- and post-evaluation of maneuvers.

Checklist Interpretation -- Pre-evaluation of the maneuver is limited

to the interpretation of data obtained as a result of performing checklist
Tunctions,

Position Change Review -~ Pogt-evaluatlion of a maneuver entails a review

of the maneuver objectives (i.e., position change) and an interpretation
of the success of the maneuver (i.e., were objectives achieved).
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OPERATIONAL STATUS (Figure 3)

Operational status is the term applied to the interactive functions which
are performed on-board the Space Shuttle to maintain the vehicle's and
crew's operating capability. The requirement for this type of funetion

can be atbributed to the proposed mission and vehicle autonomy. To achleve
these cbjectives the capability must reside on-board the Space Shuttle to
detect, diagnose and correct sub-performing systems. This regquirement is
sablgfied by the capability provided by the operational stabtus functions.

Crevw

Maintaining the operational capability of the flight crew is the concern of
the life support and envirommental control functions performed Lo sustain
life in a space environment. Crew safety is the major factor in manned
space flighte, and crew operational status functions are designed to detect
and identify for corrective action any symptoms which could prove hazardous
to human 1ife, These functions also provide a means for making life in
space as confortable as possible considering the imposed limitations,

Zife Support -- Life support encompasses those functions which are
concerned with the physical needs of the body. Specifically, (1) is

the body medically fit to perform (i.e., mental or physical); (2) are
adequate resources available to sustain life (i.e., food, water, oxygen,
ete,); and (3) is the waste management system sufficient and operational?

Envircnmental Control -- Envirommental control functions maintain cabin
environment as well as space sult enviromment., These functions maintain

a "shirt-sleeve" enviromment in the space vehicle by controlling the
temperature, pressure, and atmosphere within the cabin. Fubture spacecraft
are being proposed to suppert an artificial gravity system., This function
when defined will be considered an envirommental control function.

Vehicle

Vehicle operational maintenance functions deal with the more popular subjects
of ocn-board checkout and electrical requirements. These interactive functions
permit rapid preflight preparation of the space vehicle and in-flight error
detection and cerrection. Primary regquirements for vehicle coperational status
functions are in response to vehicle autonomy objectives and proposed long
duration mission.

On-board Checkout -- On=-board checkout is an obvious function which
permits on-board hardware subsystem analysis and correcticn of hardware
to the line replaceable unit (IRU). A crewman with the agsigstance of
the on-board computer can detect hardware faults, avold faults by
detocting marginal functioning parts, isolate failures which are not
inmediately apparent, correct the fault, and verify the succegs of

the corrective action taken.
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Electrical -- Blectrical functions are separated from thosc of on-board
checkout because of the dependence of on~board checkout functions on the
coamputer which requires electrical power, Rabionale is based on the neead
for trouble shooting power failures in the abgence of electrical power.
Fer this reason electrical power is separately considered and assigned
functions for determining and supporting total power requirements,
allocating the source of power, overall distribution and load leveling
of power, and of course, its own optional maintenance system.

216



JONVNILNIVW H3MOd

NOILNE8IH 1SIa 43MOd

304NOS H3IMOd

SLNIW3HIND3IY Y3IMOd

NO1103HHOD 11NVd

NOILVOIdIH3A WILSAS

-—

NOILVTOSI 11NV

JONVAIOAV LNV

-—

NOI123130 1inv4d

AvIiY L0313

LNOMNI3HDO QYVOENO

1

J10IHIA

L

umop>jeaig uonounyg smejg jeuoiesadp ‘¢

ALIAVHO VIO ILHY  free

LNIWIOVYNVIN 3LSYM

frasensy

LNIWIOVNVIN
IHNLVYHIIWIL - 394N0S3Y —
3J4IHISOW LY )
VIO LHY | SSANLI TWOI03W 1=
TOHINOD

AVINIWNOHIANT

1H40ddNs 3410

_J

M3Hd

1

SN1v1S T¥YNOILVvH3dO

217



SECTION 2

CREW COMPUTER COMMUNICATION TECHNIQUES

Early in the gtudy 1t became evident that no one crew/computer communication
method could be devised to satisfy the reguirements of all functions in all
function categories. The design criteria established for the methods for
performing on-board spaceborne crew functions included:

A. Tlexible in Design -- Methods must be "open-ended" for future
enhancements and readily susceptible to change for ease in
modification. '

B. "Straight-Forward" in Use =-- Methods must be easy to learn and
easy to apply so as to minimize the training process reguirements,

C. Consistent in Approach -- Methods must be similar in performance
requirements for different functions in different function
categories, and methods for performing identical functions for
different space vehicles must be similar even though the function
reguirement may vary greatly.

The communication's language developed to support the interactive methods

is a technology oriented structured vocabulary (i.e., each on-board discipline
will have an indigenous vocabulery for communicating respective function
requirements to the computer). Individual discipline languages will be
accessible through the use of function and CRT line select keys that provide
a conversational means for selecting the desired language level. The
conversational approach to obtaining a language allows time for preprocessing
software and hardware initialization. Many objectlons appear when manned
space flights are discussed along with conversational crew/computer
communications, One must remember that each discipline is being handled
separately, and preplanning should solve any critical timing problems.

The vocabulary structure developed will permit on-board computer users to
select the language working level conducive to solving the particular
problem of interest. The language has a function, command and procedural
level of problem solving capability. The "function" level will perform
gross task (e.g., display current GV measurement data); the "command"
level performs a more controlled task (e.g., display the vehicle's current
attitude using the inertial reference system); and the procedural level
will permit finer control over the task being performed. The flexibility
generated using this technique centers around the users ability to obtain
the exact data he desires and to chain vocabulary segments to perform even
more sophisticated tagks.
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A crew/computer communication's language is required to overcome the crcw/
computer intertface barrier. Attributes of the language must satisfy the
interactive requirements of the graphic-display terminal and computer
without placing uwndue hardships on the crew. The approach adopted by this
study as the solution to the above problem was to formulate a function
oriented structured vocabulary. 7The objective being to provide each on-
board discipline a unique command vocabulary for performing related inter-
active functions and eliminate the need for all crewmen %o learn a general
purpose language and adapt it to their respective job duties.

The structured vocabulary has four distinet levels which parallel the break-
down of function categories presented in Section 1. Figure 4 shows the
relationship of the levels and a description follows:

A. Category -~ Refers to eight function categories deseribed in
Section 1, e.g., Mission Control.

E. Funetion -~ The first level breakout of a functior category,
e,g., Mission Control Planning,

C. Subfunction -- The next level breakout of a function, e.g.,
Miggion Control Planning - Timeline Event Analysis.

D. Vocabulary -- The detailed working level is subdivided into two
operating modes, procedural and command.

The prupose of the structured vocabulary is to expedite the location and
access of the desired function language. This is accomplished through
keyword association of job funetiong to technology language. Another
advantage of a structured vocabulary is that it's easy to program, and
adapts to an interactive environment.

The vocabulary level operating modes, "procedural" and "command", permit the
user the option of censtructing a complete function for automatic execution

or performing each task serially. The latter affords the user greater control
over the function being performed by providing intermediate task results for
analysis before proceeding to the next task.

To facilitate further discussion of Space Shuttle crew/computer communication
methods, a minimum hardware configuration of a remote graphic-display terminal
is presented (Figure 5), This particular configuration was selected after
analyzing the common communication requivements of the funcblonsg listed in
Section 1.

This graphic-display terminal configuration provides an instrument for
discussion and developing z communication’s vocabulary. A discussion of
the crew/computer hardware/vocabulary interactions are explained in the
following paragraphs.
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Procedure Mode

Reentry procedure for landing at FEglin; alternate Marshall;
timeline update is auto; retro burn setup is 06;07:45:23.
(execute)

Caommand Mode

Keys CRT Option

Category Select Maneuver Management
Reentry

Function Select Preparation

Command Key

Landsite

Primary Eglin

‘Alternate Marshall

Timeline 4 (Retro burn setup)
Execute Sequence Checklist

Execute Function Reentry Sequence
The crewman inputs reentry data then computes a dryrun of the reentry

event. After dryrun seguence is set for execution and starts monitoring
procedure,
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SUMMATTCN

The primary objective of this research effort was to develop advanced crew/
computer communicatiorn methods applicable to manned spacecraft such as the
Space Shuttle, Tt is felt that this objective has been achieved and is
represented by the defined structured vocabulary. Development of a
"computerized" structured vocdbulary consisting of on-board technology
oriented languages has become feasible with the advent of langusge compilers.
McDonnell Douglas is currently producing such a campiler which provides a
means for defining syntax in terms of a computer's machine language. The
compller generates a software system which is capable of recognizing and
analyzing statements written in the defined syntax, The syntax can now be
used to communicate funetion regulrements to the computer. The McDonnell
Douglas language compiler, referred to as a Syntax Directed Compiler (SDC),
is belng developed in Huntington Beach, California, and implemented at
Marshall Space Flight Center, Huntsville, Alabama. The significance of
this technique is that individual languages can be expanded and/or changed
without affecting other languages or the operating system. These techniques
as presented in this document have been implemented at MSFC on an IBM 7094
and at MDAC-3t., Louils in a Space Shuttle simulator. Through these efforts
this technology has proven effective and usable.

As & result of the above efforts, MSFC is planning to extend and/or expand
the vocabulary to meet gpecific needs of the Space Shuttle missions.
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A PROPOSED INCIPIENT FIRE AND TOXIC GAS CAUTION
AND WARNING SYSTEM FOR SHUTTLE

Introduction

Fire detection in the pre-Shuttle era has been on an after the fact
basis, This situation has not only plagued the Aerospace industry, but
has been the norm in almost every facet of industrial technology. While
great strides have been made in the past fifteen years in the fire prevention
area by the development of non-flammable materials, there are still many
cases in engineering and design which precludes the use of non-flammable
materials. While the fire hazard is markedly reduced it still exists,
Therefore, both the designer and engineer must give careful considerations
to the what, where, and how materials are used in any system whether for
earth or space use, In fire prevention, one must consider how to control
the fuels, that is, its non-flammability in the anticipated environment.
Electrical shorts and other ignition sources must be minimized. In
addition, the amounts and placement of flammable materials must be
adjusted so that if a fire does occur, catastrophic events are prevented,
As long as the designer and engineer are cognizant of these factors for
ground system use, he can generally accept some calculated risks. Or,
if he wishes to go one step further he might add a fire warning and control
system which will provide an additional time factor in order to react to
put out the fire, since pre-combustion and combustion times are generally
of longer duration on earth, However, in space, it is another matter to
both control and prevent fires since secondary problems of smoke, toxicity,
and escape become major factors in personnel logistics. Therefore, along
with trying to have the best non-ignitable materials and configuration, your
ultimate goal in space is to buy time for the crew to react in case a fire is
about to occur. The problem of buying time at present has no easy solution
because technology has lagged in this area. I'm sure that my previous
statement may be cause for some heated discussion; however, when all of
the factors are taken into account, all fire and smoke warning devices have
vulnerable spots, Even those devices now available which call themselves
fire precursor warning methods are subject to question., All the devices in
both categories mentioned are either non-specific, that is, subject to
interferences or they are insensitive, Thus the false alarm nature of these
techniques markedly decrease their usefulness because in space we cannot
afford to cry Wolf,
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Discussion

NASA has been looking into the area of fire caution and warning
systems quite carefully in the past few years. While we don't claim any
panacea in this area, we are locking at some rather interesting techniques
which could result in a possible breakthrough in the area of buying time for
either the Shuttle or Space Station crews (Figure 1)« We have classified
fire detectors as primary and secondary types, While several of the
systems that are called out have obviously been around for some time,
they are worthy of consideration for certain applications, In addition,
we believe that in-depth testing is required to uncover their advantages
and disadvantages. This re-evaluation is being done to probe through the
smoke laid down by our sometimes over zealous salesmen, I do not intend
to cover the world of detection but rather address myself to one rather
interesting system which we at MSFC have been studying for the past two
years, That is the correlation spectrometer/interferometer technology
as it applies to fire precursor and toxic gas detection for Shuttle.

Figure 2 shows a typical fire curve, Primarily for some undefined time,
depending upon conditions, the ignitor and fuel tend to heat up., During this
process, pyrolysis products are formed which vaporize into environment,

As the material continues to increase in temperature, prior to its reaching
its autoignition temperature, smoke is produced giving a possible visible
indication of impending fire, At the material's autoignition point, the vapor
being produced will burst into flame accompanied by an increase in heat and
pressure, Figure 3 compares the fire risk in space versus earth,

The major problem facing the successful implementation of remote
optical detection is the rejection of background spectra. While suitable
sensitivity is available for the gases of interest, the large number, and at
present totally unknown concentrations of other gases in the Shuttle, drive
the instrument design toward the ultimate available specificity., A
difficult route to follow since there is insufficient criteria for how good
the system neceds to be, However, this chasm does not seem to be un~
bridgeable based upon in~house studies at MSFC and the available results
of Contract NAS8-26197 with Arthur D, Little, Incorporated. ¥rom these
data, it appeares that correlation spectrometer/interferometer techniques
is one of the most promising of all available systems (Figure 4).

While the ultimate in sophistication would be 2 scanning correlation
interferometer with computer data reduction and readout, this concept
cannot be developed within the time frame of the Shuttle, In order to
obtain the maximum in specificity and sensitivity, keep the packaging, and
power consumption to a minimum with high degree reliability, it was
decided that the best approach to home in onfor the immediate future, was
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PRIMARY TYPES

CONDENSATION NUCLEI COUNTER

IONIZATION DETECTORS

SMOKE DETECTORS

CORRELATION SPECTROMETER/INTERFEROMETER
UV/IR DETECTORS

CONTINUOUS WIRE 'I‘HERMISTORS

TEMPERATURE SENSITIVE PAINTS

TRACER ELEMENTS

SECONDARY TYPES

- THERMAL CONDUCTIVITY BRIDGE
CATALYTIC WIRE BRIDGE
MASS SPECTROMETER
GAS CHROMATOGRAPHY

R.F. DETECTORS .

Figure 1, Types of Fire Detectors
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FIGURE 4 - SCHEMATIC DIAGRAM OF CORRELATION INTERFEROMETER
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the correlation gas filter concept. However, since the weak points of the

gas filters are the same as those inherent with the non-dispersive infrared
system, namely background rejection, we would have to circumvent this
problem by some means, Since the requirement of background rejection

is of utmost importance, the instrument must be based on the use of spectral
fine structure whose Lorentz line half widths are on the order of 0,1 em™!

or greater. Also in order for the high resolution instrument to be capable

of separating distiﬁguishing features, the gases selected must have vibrational
mode with low moments of inertia.

Fortunately, some information can be gleaned on the pyrolysis
products of materials selected for Shuttle interior, From this information,
we were able to select eight potential candidates to use as incipient fire
precursors {Figure 5). Of the eight potential candidates as based upon high
resolution spectra and a tentative evaluation of possible interfering gas
spectra, it appears that the leading candidates to be used are COF3 and SiFy4.
However, monitoring these two gases only, will not suffice due to some minor
interferences. In order to rely on the data we will have to monitor the
background for COp and HpO in the case of COF, and CO in the case of SiF4.
COF5 (at 0.6 torr partial pressure) shows resolvable rotational fine
structure between 1894 and 1973 cm™! and between 2325 and 2650 cm~-l. The
average line spacings and half widths are 0,34 cm=~l and 0,18 cm=~! under
an air atmosphere. The line half widths for the pure gas was found to be
0.03 cm-L. SiF, has line spacings and Lorentz half widths of 0,50 cm~!
and 0,18 cm-l, respectively, under a nitrogen atmosphere in the region
between 1917 and 2099 cm™L,

By utilizing a detection system capable of analyzing for the most likely
fire precursor or precursors plus those causing background interference, it
is believed that a highly reliable incipient fire and toxic gas caution and
warning system can be developed for the Shuttle,

Based upon this rationale, we have established some very preliminary
parameter goals for our caution and warning system (Figure 6). In
addition, the simplest systems would have to provide spectral information
without being transformed either to space directly (dispersion) or to space
by way of time (interferometry). This can be accomplished by one of three
methods; either as a specific spectral filfer mask or by negative or positive
adsorption filtering. The best approach is the use of the spectral filter
mask; however, this not only increases the system complexity, but also
degrades its long term reliability.

A simple gas filled optical cell used as an absorption filter for the
spectral lines produces what can be called a '""'negative filter' in the sense

268



1S9i93U] JO S3SBY) JO SOIISIIYORIRYY [BN09dS ¢ 4nbi 4

--- L' o~
— umop pue T «~
80°-£0° by~
~-n 0T~
_— 2 ~

(sbui3irjds

a1dojosi 03 anp
uo1IngiIsip |[epowtq
~ 0 sbuioeds

60°-¢£0° 19 {ews) gZ~¢
1-60° 0S-0%
(T-une W) (-9
YA 2UET sbu;oedg aul

¢'al

00G6¢-00%¢

SI panjosal §I pasn aq pinoa jeyl pueq jeo1dky
v "49339G J0 o _wo T* jo uonnjosay a1inbaj {jIm Styl S3R2ipUi BIRP JUSSSI  *PIAJOS3I 3(
U0 24n30NJ3S dU1) Y3 ji dndafow siyl Joj pasn aq pInod spueq Aosusnbasy ybiy jo sequnu y

2ey

—

91
Led
8¢¢
T¢e

091

(AN

(oG 03 "H0D HIEM@NIEOV

tIbusRg pucg

(92U3494433U1
wie jo 934 uoiyod

J3ddry 002-00L
G002-008¢
00¢2-0061
00¢e-008¢
00te-002¢

001¢-006¢

(92U349}
-4133ui otyaydsoune
JO 234§ Ajanijejan
pueq jo uollod
19401) 00Z v~009¢

uothny jrnoadg

w

paisabbng

€109
CoN
09
4R
NOH

TOH

4H

sey

269



Optical Path Length

Minimum Detectable Partial Pressure (Typ)

Spectral Region

Response Time

Number of Gases to be Monitored

Size, Volume, Weight

Lifetime

Figure 6. Required System Parameters

270

1 meter

<10"6 atm

As required
(probably 2p-5u)

<30 seconds

6 or more
Minimum

2 years



that it removes the spectral signature of interest while passing all of the
background information between the absorption lines. In general, using
only negative filtering leads to a system in which the detector/electronic
subsystem must discriminate and detect on the basis of very small changes
in a large signal (typically changes on the order of 1 part in 1075 to 1077

for the problem at hand).

Commercial instruments have been built utilizing such negative filter,
but positive filtering concepts have a distinctive advantage, The common
implementation of these involves the use of a pneumatic detector that con-
tains the gas of interest. Infrared absorption takes place only at the lines
or bands of interest; thus significantly reducing the radiation load on the
detector to just the wavelengths of interest,

An alternative approach has been suggested in which "positive filtering"
is achjeved. In this configuration, the gas sample and the associated optical
system pass radiation only in the spectral intervals corresponding to the
absorption lines of interest. The system consists of a interferometer which
is adjusted so that there is zero path différence in the two arms, and there
38 destructive interference at the output for all wavelengths, i.e., the
interferometer is effectively opaque, Thena sample of the gas of interest is
placed in one arm and the anomalous refraction in and near the absorption
lines changes one path by many wavelengths. The condition of destructive
interference is upset at those wavelengths and radiation passes through the
system only at those specific wavelengths, A positive filtering system
generally leads to smaller signals, but much larger percentage modulation
for detection and discrimination.

If either one of these approaches is used in a simple level detection
device, it would be vulnerable to changes in the background level and the
presence of spurious absorption bands, Sensitivity to background (or source)
level can be completely eliminated and susceptibility to false alarms greatly
reduced by combining the two techniques to determine the relative change in
absorption of the lines of interest and the spectral region between the lines,

An effective and compact configuration for accomplishing this is shown
in Figure 7. The basic positive filter interferometer is set up and the
radiation at the wavelengths of the absorption lines appears in the lower
output beam. One of the interferometer mirrors is made partially
transmitting allowing the '""negative filtered' radiation to escape the inter~
ferometer. A second gas cell may be necessary to obtain a sufficient amount
of negative filtering, In any event, this radiation (upper beam) is passed
through an optical attenuator so that its total power exactly equals the
positively filtered beam when none of the gas of interest is in the sample path.
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The strength of the two beams is compared by alternately directing them to a
single detector. A signal processing block diagram is shown in Figure 8, The
difference between the two beams is determined by the a.c. portion of the detec-
tor signal and the d.c, level is neglected, Synchronous detection of the sig-
nal is used with the rotation ox a change in broad absorption band which covers
both the positively filtered lines and the negatively filtered region, the
radiation levels in the two beams change by the same percentage and there is

no signal difference introduced, Positive signals (in phase) indicate the
radiation in the absorption bands has fallen off and the gas of interest is
present, Negative signals indicate that something in the background between

the absorption lines of interest is beginning to absorb, This negative signal
would be nulled out either optically (by varying the attenuator), or electrically
to preserve the threshold setting of the alarm, Interruption of the beams or a
gross loss in transmission from the scurce would be used to sound an "inopera-
tive" alarm,

If there were interferring gases in the background, i,e,, gases with
absorption lines overlapping those of the gas of interest, the blocking filter
at the sensor input could include negative filtering by a cell filled with the
offending gas.

In the present stage of development, we now have an engineering breadboard
in operation (Figure 9) and testing is now underway to determine its sensitivity
(signal to noise ratio), stability, specificity and susceptibility to inter-
ference, nature of the stored reference, capability of being used in multigas
analysis, and equipment complexity. Gas sampling techniques and capabilities
are also being evaluated as well. One technique is obviously by use of a finite
dimensional gas cell where samples from a given "black box" or locale can be
assayed, The second concept is to evaluate the ability of the unit to be used
for area monitoring, If the second concept is found to be feasible two correla-
tion gas filters can be used for the purpose of triangulating in on a potential
fire source.

The contemplated flight unit based upon present estimates will be modular

in nature., Each module will be approximately 5 cm? by 15 em long, Six modules
are expected to make up the total package, "
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Conclusions

Based upon present evidence, the gas filter cell offers the ultimate
in background rejection. Not only does the gas filter cell offer sensitivity
as good as the other systems, but its inherent throughput advantage offers
more ultimate sensitivity at the expense of some source power. The most
difficult problem in implementing the gas filter cell is making stable
reference samples for the two-year lifetime. It is believed that the
individual gas cell sensor can be made into 2 small, compact, and
reliable instrument, However, multiple gas monitoring will probably
require parallel optical systems.

Based upon present data, the amount of toxic gas required to
implement the system will be insufficient to be a significant hazard in
the spacecraft., Also, this approach is believed to offer the most
convenient changes in gas of interest - simply add a sensor for the new
species without changing any of the existing system.

276



N7/~ 36208

FIRE PROTECTION DESIGN FOR SHUTTLE

G. F. Ard

NASA, Kennedy Space Center, Florida

R INTRODUCTION
A. The objectives of the fire protection systems at KSC are, in order of priority:
1. Protection of personnel.
2.  Protection of facilities.
3. Prétection of flight hardware.
B. Specific testrictions to systems are:
1.  There will be no automatic activation of water systems capable of
spraying on flight hardware except where the system should be intentionally armed for

automatic operation during a specific set of circumstances or conditions,

2. Two manual operating functions, with logic to prevent inadvertent
operation, will be required to turn the water on.

3. Separate electrical circuitry hetween operating switches and valves
should be provided so as to prevent inadvertent activation by a single electrical short.

Il. SHUTTLE FLOW THROUGH THE FACILITIES (Figure 1)
A. Vehicle Assembly Building (Figure 2)
1. Assembly of Major Structural E lements
2.  Test and Checkout of Flight Systems
3. Mating and Checkout

4, Component or System Overhaul and Maintenance
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B. Launch Pad (Figure 3)
1. System Preparation & Test
2. CDDT
3. Propellant and Cryo Loading
4.  Launch Countdown
C. Landing Area (Includes air-breather engine run up) (Figure 4)
D. Safing Area (Figure 4)
1. Venting, LOX and GH,
2. Purging and Passifying Systems
3. Loading JP Fuel
4, Cargo and Crew Off-loading |
iH. SYSTEMS AVAILABLE - HAZARD RELATIONSHIP
A. Vehicle Assembly Building

| 1. This building is part sprinklered. Sprinkler protection has been
provided for combustible and flammable storage areas.

2. The extensible platforms in the High Bays are protected by open
nozzle deluge systems. These systems have three modes of operation: automatic,
manual, and off.

_ 3. The existing systems provide protection against a fire from gaining
such proportions as to seriously expose ordnance to excessive temperatures with
possible explosion,

4. A new spill (JP) containment, drain, disposal and water wash~-down
should be provided. Dikes with removable sections for traffic flow should be provided.

5. Certain inaccessible densely loaded compartments of the shuttle
stages should be designed to receive an extinguishing and/or inerting media. The
media has not been selected. Portable equipment should be connected and ready to
support during test and checkout.
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B. Launch Pad (Base Line - Vertical Concept)

1. The Launch Umbilical Tower (LUT) has open nozzle watet deluge
systems on approximately 50% of the work levels plus the egress paths.

2.  The existing systems will be modified as necessary to provide
protection at the required shuttle work levels.

3. An additional egress route will be established and protected with open
nozzle water spray.

4.  As stated previously, portable equipment will be connected to the
flight hardware compartments and placed in a ready to support made during periods of
hazardous opetations.

5.  With our existing Single Failure Point philosophy and a change to
simultaneous flow of LH2 and LOX, the fire protection systems will be designed to
contain and/or extinguish a fire. Reducing the probability of an explosion is a separate
subject.

6. Related to fire protection is response time and procedures of the fire
fighting and rescue personnel. New concepts for the rescue of sixteen (16) crew and
passengers will have to be developed based on final configuration of and access to
the shuttle stages. The existing slidewire and elevators will require modification if
they are retained.

C. Landing Area
1. Mobile equipment will be used to provide a 2" thick layer of protein
foam on the runway. Additional mobile foam equipment will be available for covering

the shuttie stage wherever it stops if required. This same equipment will then be
available for protection at other locations during ground cycle.

2. Water pumper units will be prof/ided.

3. Halon 2402, Dibromotetrafluoroethane, CBrF9CB,F2 has possibilities
for outdoor use and will be considered.

D. Safing Area

1. Aninstalled protein foam system is highly recommended., Some of the
discharge nozzles will be directionally controlled.

2. A water deluge system will be provided which can also be used for
cooling or wash down.
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IV. The extinguishing media that will be considered are:

A,
B.

Water and Water Additives
Foam

1. Hi Expansion

2.  Protein

3. Light Water

Gaseous
1. Nitrogen
2, CO2

3. Halon 1301 and 2402

Dry Powder
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